Skip to main content
Immunology logoLink to Immunology
. 1997 Feb;90(2):169–175. doi: 10.1046/j.1365-2567.1997.00151.x

Mutations affecting the superantigen activity of staphylococcal enterotoxin B.

C Briggs 1, C Garcia 1, L Zhang 1, L Guan 1, J L Gabriel 1, T J Rogers 1
PMCID: PMC1456745  PMID: 9135543

Abstract

As a superantigen, staphylococcal enterotoxin B (SEB) possesses the ability to bind to major histocompatibility complex class II molecules and be recognized by T cells bearing certain T-cell receptor (TCR) V beta alleles. Other investigators have utilized site-specific mutagenesis to generate amino acid substitutions to identify residues that may be involved in the interaction with the TCR beta-chain. In an attempt further to define the face of the SEB molecule involved in the interaction with the beta-chain, we have employed a polymerase chain reaction (PCR)-based, site-specific mutagenesis method to generate amino acid substitutions with altered superantigen activity. Our results show that valine at position 169 appears to be involved in the function of this superantigen, since each of several substitutions at this position exhibit a significantly reduced ability to induce T-cell proliferation. Analysis of the responding T cells to the residue 169 substitution shows that the mutant toxins maintain TCR V beta selectivity. At the same time, mutation of the proximal histidine at position 166 does not alter the superantigen activity of SEB. Radiolabelled binding analysis of these H166 and V169 mutants shows that class II-binding activity is not significantly altered. When viewed in the context of other results reported in the literature, combined with the crystal structure of the toxin, our results suggest that the interaction with the TCR probably involves SEB residues which ring a cavity along one side of the toxin molecule.

Full text

PDF
169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya K. R., Passalacqua E. F., Jones E. Y., Harlos K., Stuart D. I., Brehm R. D., Tranter H. S. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature. 1994 Jan 6;367(6458):94–97. doi: 10.1038/367094a0. [DOI] [PubMed] [Google Scholar]
  2. Amyes S. G., Towner K. J., Young H. K. Classification of plasmid-encoded dihydrofolate reductases conferring trimethoprim resistance. J Med Microbiol. 1992 Jan;36(1):1–3. doi: 10.1099/00222615-36-1-1. [DOI] [PubMed] [Google Scholar]
  3. Chen L. X., Zhang Z. P., Scafonas A., Cavalli R. C., Gabriel J. L., Soprano K. J., Soprano D. R. Arginine 132 of cellular retinoic acid-binding protein (type II) is important for binding of retinoic acid. J Biol Chem. 1995 Mar 3;270(9):4518–4525. doi: 10.1074/jbc.270.9.4518. [DOI] [PubMed] [Google Scholar]
  4. Donigan A. M., Cavalli R. C., Pena A. A., Savage C. R., Soprano D. R., Soprano K. J. Epidermal growth factor receptors lose ligand binding ability as WI-38 cells progress from short-term to long-term quiescence. J Cell Physiol. 1993 Apr;155(1):164–170. doi: 10.1002/jcp.1041550121. [DOI] [PubMed] [Google Scholar]
  5. Harris T. O., Betley M. J. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Infect Immun. 1995 Jun;63(6):2133–2140. doi: 10.1128/iai.63.6.2133-2140.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hayball J. D., Robinson J. H., O'Hehir R. E., Verhoef A., Lamb J. R., Lake R. A. Identification of two binding sites in staphylococcal enterotoxin B that confer specificity for TCR V beta gene products. Int Immunol. 1994 Feb;6(2):199–211. doi: 10.1093/intimm/6.2.199. [DOI] [PubMed] [Google Scholar]
  7. Irwin M. J., Hudson K. R., Fraser J. D., Gascoigne N. R. Enterotoxin residues determining T-cell receptor V beta binding specificity. Nature. 1992 Oct 29;359(6398):841–843. doi: 10.1038/359841a0. [DOI] [PubMed] [Google Scholar]
  8. Jardetzky T. S., Brown J. H., Gorga J. C., Stern L. J., Urban R. G., Chi Y. I., Stauffacher C., Strominger J. L., Wiley D. C. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature. 1994 Apr 21;368(6473):711–718. doi: 10.1038/368711a0. [DOI] [PubMed] [Google Scholar]
  9. Jardetzky T. S., Brown J. H., Gorga J. C., Stern L. J., Urban R. G., Chi Y. I., Stauffacher C., Strominger J. L., Wiley D. C. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature. 1994 Apr 21;368(6473):711–718. doi: 10.1038/368711a0. [DOI] [PubMed] [Google Scholar]
  10. Kappler J. W., Herman A., Clements J., Marrack P. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J Exp Med. 1992 Feb 1;175(2):387–396. doi: 10.1084/jem.175.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kappler J. W., Pullen A., Callahan J., Choi Y., Herman A., White J., Potts W., Wakeland E., Marrack P. Consequences of self and foreign superantigen interaction with specific V beta elements of the murine TCR alpha beta. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):401–407. doi: 10.1101/sqb.1989.054.01.049. [DOI] [PubMed] [Google Scholar]
  12. Kappler J., Kotzin B., Herron L., Gelfand E. W., Bigler R. D., Boylston A., Carrel S., Posnett D. N., Choi Y., Marrack P. V beta-specific stimulation of human T cells by staphylococcal toxins. Science. 1989 May 19;244(4906):811–813. doi: 10.1126/science.2524876. [DOI] [PubMed] [Google Scholar]
  13. Lin Y. S., Largen M. T., Newcomb J. R., Rogers T. J. Production and characterisation of monoclonal antibodies specific for staphylococcal enterotoxin B. J Med Microbiol. 1988 Dec;27(4):263–270. doi: 10.1099/00222615-27-4-263. [DOI] [PubMed] [Google Scholar]
  14. Long E. O., Rosen-Bronson S., Karp D. R., Malnati M., Sekaly R. P., Jaraquemada D. Efficient cDNA expression vectors for stable and transient expression of HLA-DR in transfected fibroblast and lymphoid cells. Hum Immunol. 1991 Aug;31(4):229–235. doi: 10.1016/0198-8859(91)90092-n. [DOI] [PubMed] [Google Scholar]
  15. Mahmood R., Khan S. A. Role of upstream sequences in the expression of the staphylococcal enterotoxin B gene. J Biol Chem. 1990 Mar 15;265(8):4652–4656. [PubMed] [Google Scholar]
  16. Mollick J. A., McMasters R. L., Grossman D., Rich R. R. Localization of a site on bacterial superantigens that determines T cell receptor beta chain specificity. J Exp Med. 1993 Feb 1;177(2):283–293. doi: 10.1084/jem.177.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ranelli D. M., Jones C. L., Johns M. B., Mussey G. J., Khan S. A. Molecular cloning of staphylococcal enterotoxin B gene in Escherichia coli and Staphylococcus aureus. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5850–5854. doi: 10.1073/pnas.82.17.5850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schad E. M., Zaitseva I., Zaitsev V. N., Dohlsten M., Kalland T., Schlievert P. M., Ohlendorf D. H., Svensson L. A. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 1995 Jul 17;14(14):3292–3301. doi: 10.1002/j.1460-2075.1995.tb07336.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schlievert P. M. Role of superantigens in human disease. J Infect Dis. 1993 May;167(5):997–1002. doi: 10.1093/infdis/167.5.997. [DOI] [PubMed] [Google Scholar]
  20. Swaminathan S., Furey W., Pletcher J., Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature. 1992 Oct 29;359(6398):801–806. doi: 10.1038/359801a0. [DOI] [PubMed] [Google Scholar]
  21. Ulrich R. G., Bavari S., Olson M. A. Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Nat Struct Biol. 1995 Jul;2(7):554–560. doi: 10.1038/nsb0795-554. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES