Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Feb 15;24(4):760–765. doi: 10.1093/nar/24.4.760

Antisense oligonucleotide containing an internal, non-nucleotide-based linker promote site-specific cleavage of RNA.

M A Reynolds 1, T A Beck 1, P B Say 1, D A Schwartz 1, B P Dwyer 1, W J Daily 1, M M Vaghefi 1, M D Metzler 1, R E Klem 1, L J Arnold 1
PMCID: PMC145679  PMID: 8604321

Abstract

We have designed and synthesized a series of novel antisense methylphosphonate oligonucleotide (MPO) cleaving agents that promote site-specific cleavage on a complementary RNA target. These MPOs contain a non- nucleotide-based linking moiety near the middle of the sequence in place of one of the nucleotide bases. The region surrounding the unpaired base on the RNA strand (i.e. the one directly opposite the non-nucleotide-linker) is sensitive to hydrolytic cleavage catalyzed by ethylenediamine hydrochloride. Furthermore, the regions of the RNA comprising hydrogen bonded domains are resistant to cleavage compared with single-stranded RNA alone. Several catalytic moieties capable of supporting acid/base hydrolysis were coupled to the non-nucleotide-based linker via simple aqueous coupling chemistries. When tethered to the MPO in this manner these moieties are shown to catalyze site-specific cleavage on the RNA target without any additional catalyst.

Full Text

The Full Text of this article is available as a PDF (84.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal S., Mayrand S. H., Zamecnik P. C., Pederson T. Site-specific excision from RNA by RNase H and mixed-phosphate-backbone oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1401–1405. doi: 10.1073/pnas.87.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beutler E., Gelbart T., Han J. H., Koziol J. A., Beutler B. Evolution of the genome and the genetic code: selection at the dinucleotide level by methylation and polyribonucleotide cleavage. Proc Natl Acad Sci U S A. 1989 Jan;86(1):192–196. doi: 10.1073/pnas.86.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breslow R. Kinetics and mechanism in RNA cleavage. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1208–1211. doi: 10.1073/pnas.90.4.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cazenave C., Stein C. A., Loreau N., Thuong N. T., Neckers L. M., Subasinghe C., Hélène C., Cohen J. S., Toulmé J. J. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res. 1989 Jun 12;17(11):4255–4273. doi: 10.1093/nar/17.11.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dagle J. M., Weeks D. L., Walder J. A. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res Dev. 1991 Spring;1(1):11–20. doi: 10.1089/ard.1991.1.11. [DOI] [PubMed] [Google Scholar]
  6. Giles R. V., Ruddell C. J., Spiller D. G., Green J. A., Tidd D. M. Single base discrimination for ribonuclease H-dependent antisense effects within intact human leukaemia cells. Nucleic Acids Res. 1995 Mar 25;23(6):954–961. doi: 10.1093/nar/23.6.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hogrefe R. I., McCaffrey A. P., Borozdina L. U., McCampbell E. S., Vaghefi M. M. Effect of excess water on the desilylation of oligoribonucleotides using tetrabutylammonium fluoride. Nucleic Acids Res. 1993 Oct 11;21(20):4739–4741. doi: 10.1093/nar/21.20.4739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hogrefe R. I., Reynolds M. A., Vaghefi M. M., Young K. M., Riley T. A., Klem R. E., Arnold L. J., Jr An improved method for the synthesis and deprotection of methylphosphonate oligonucleotides. Methods Mol Biol. 1993;20:143–164. doi: 10.1385/0-89603-281-7:143. [DOI] [PubMed] [Google Scholar]
  9. Hogrefe R. I., Vaghefi M. M., Reynolds M. A., Young K. M., Arnold L. J., Jr Deprotection of methylphosphonate oligonucleotides using a novel one-pot procedure. Nucleic Acids Res. 1993 May 11;21(9):2031–2038. doi: 10.1093/nar/21.9.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kierzek R. Hydrolysis of oligoribonucleotides: influence of sequence and length. Nucleic Acids Res. 1992 Oct 11;20(19):5073–5077. doi: 10.1093/nar/20.19.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kierzek R. Nonenzymatic hydrolysis of oligoribonucleotides. Nucleic Acids Res. 1992 Oct 11;20(19):5079–5084. doi: 10.1093/nar/20.19.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kolb M., Barth J., Heydt J. G., Jung M. J. Synthesis and evaluation of mono-, di-, and trifluoroethenyl-GABA derivatives as GABA-T inhibitors. J Med Chem. 1987 Feb;30(2):267–272. doi: 10.1021/jm00385a007. [DOI] [PubMed] [Google Scholar]
  13. Komiyama M., Inokawa T. Selective hydrolysis of tRNA by ethylenediamine bound to a DNA oligomer. J Biochem. 1994 Oct;116(4):719–720. doi: 10.1093/oxfordjournals.jbchem.a124586. [DOI] [PubMed] [Google Scholar]
  14. Komiyama M., Inokawa T., Shiiba T., Takeda N., Yoshinari K., Yashiro M. Molecular design of artificial hydrolytic nucleases and ribonucleases. Nucleic Acids Symp Ser. 1993;(29):197–198. [PubMed] [Google Scholar]
  15. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  16. Podyminogin M. A., Vlassov V. V., Giegé R. Synthetic RNA-cleaving molecules mimicking ribonuclease A active center. Design and cleavage of tRNA transcripts. Nucleic Acids Res. 1993 Dec 25;21(25):5950–5956. doi: 10.1093/nar/21.25.5950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Renz M., Lohrmann R., Orgel L. E. Catalysts for the polymerization of adenosine cyclic 2',3'-phosphate on a poly (U) template. Biochim Biophys Acta. 1971 Jul 29;240(4):463–471. doi: 10.1016/0005-2787(71)90703-9. [DOI] [PubMed] [Google Scholar]
  18. Reynolds M. A., Beck T. A., Hogrefe R. I., McCaffrey A., Arnold L. J., Jr, Vaghefi M. M. A non-nucleotide-based linking method for the preparation of psoralen-derivatized methylphosphonate oligonucleotides. Bioconjug Chem. 1992 Sep-Oct;3(5):366–374. doi: 10.1021/bc00017a003. [DOI] [PubMed] [Google Scholar]
  19. Usher D. A., Erenrich E. S., Eckstein F. Geometry of the first step in the action of ribonuclease-A (in-line geometry-uridine2',3'-cyclic thiophosphate- 31 P NMR). Proc Natl Acad Sci U S A. 1972 Jan;69(1):115–118. doi: 10.1073/pnas.69.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Usher D. A., McHale A. H. Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1149–1153. doi: 10.1073/pnas.73.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walder R. Y., Walder J. A. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5011–5015. doi: 10.1073/pnas.85.14.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woolf T. M., Jennings C. G., Rebagliati M., Melton D. A. The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res. 1990 Apr 11;18(7):1763–1769. doi: 10.1093/nar/18.7.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES