Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Feb 15;24(4):602–610. doi: 10.1093/nar/24.4.602

Elements within the beta-lactoglobulin gene inhibit expression of human serum albumin cDNA and minigenes in transfected cells but rescue their expression in the mammary gland of transgenic mice.

I Barash 1, M Nathan 1, R Kari 1, N Ilan 1, M Shani 1, D R Hurwitz 1
PMCID: PMC145689  PMID: 8604300

Abstract

Two new beta-lactoglobulin (BLG)/human serum albumin (HSA) hybrid gene vectors were constructed and tested for expression in COS-7 cells and in transgenic mice. The HSA sequences were inserted between the second and sixth BLG exons. Transient transfection experiments with these vectors as well as a series of additional vectors with either the BLG 5'- or 3'- intragenic sequences revealed that sequences within BLG exon 1/intron 1/exon 2 abrogated BLG- directed HSA expression in vitro, regardless of the presence of HSA introns or the origin of the 3' polyadenylation signal. In contrast, the same BLG expression cassette enabled the efficient expression of HSA cDNA or minigene in the mammary gland of transgenic mice with subsequent secretion of the corresponding protein into the milk of 56 and 82%, respectively of the mouse strains at levels up to 0.3 mg/ml. Previous attempts to express HSA cDNA inserted into exon 1 of the BLG gene had failed [Shani,M., Barash,I., Nathan,M., Ricca,G., Searfoss,G.H., Dekel,I., Faerman,A., Givol,D. and Hurwitz,D.R. (1992) Transgenic Res. 1, 195- 208]. The new BLG expression cassette conferred more stringent tissue specific expression than previously described BLG/HSA constructs [Barash,I, Faerman,A., Ratovitsky,T, Puzis,R., Nathan,M., Hurwitz,D.R. and Shani, M. (1994) Transgenic Res. 3, 141-151]. However, it was not able to insulate the transgenes from the surrounding host DNA sequences and did not result in copy number dependent expression in transgenics. Together, the in vitro and in vivo results suggest both positive and negative regulatory elements within the BLG intragenic sequences evaluated. The new BLG construct represents an extremely valuable vector for the efficient expression of cDNAs in the mammary gland of transgenic animals.

Full Text

The Full Text of this article is available as a PDF (154.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S., Clark A. J. Characterization of the gene encoding ovine beta-lactoglobulin. Similarity to the genes for retinol binding protein and other secretory proteins. J Mol Biol. 1988 Feb 5;199(3):415–426. doi: 10.1016/0022-2836(88)90614-6. [DOI] [PubMed] [Google Scholar]
  2. Ali S., McClenaghan M., Simons J. P., Clark A. J. Characterisation of the alleles encoding ovine beta-lactoglobulins A and B. Gene. 1990 Jul 16;91(2):201–207. doi: 10.1016/0378-1119(90)90089-a. [DOI] [PubMed] [Google Scholar]
  3. Archibald A. L., McClenaghan M., Hornsey V., Simons J. P., Clark A. J. High-level expression of biologically active human alpha 1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5178–5182. doi: 10.1073/pnas.87.13.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  5. Barash I., Faerman A., Ratovitsky T., Puzis R., Nathan M., Hurwitz D. R., Shani M. Ectopic expression of beta-lactoglobulin/human serum albumin fusion genes in transgenic mice: hormonal regulation and in situ localization. Transgenic Res. 1994 May;3(3):141–151. doi: 10.1007/BF01973981. [DOI] [PubMed] [Google Scholar]
  6. Beck K. M., Seekamp A. H., Askew G. R., Mei Z., Farrell C. M., Wang S., Lukens L. N. Association of a change in chromatin structure with a tissue-specific switch in transcription start sites in the alpha 2(I) collagen gene. Nucleic Acids Res. 1991 Sep 25;19(18):4975–4982. doi: 10.1093/nar/19.18.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berkowitz E. A., Evans M. I. Functional analysis of regulatory regions upstream and in the first intron of the estrogen-responsive chicken very low density apolipoprotein II gene. J Biol Chem. 1992 Apr 5;267(10):7134–7138. [PubMed] [Google Scholar]
  8. Bornstein P., McKay J., Morishima J. K., Devarayalu S., Gelinas R. E. Regulatory elements in the first intron contribute to transcriptional control of the human alpha 1(I) collagen gene. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8869–8873. doi: 10.1073/pnas.84.24.8869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brinster R. L., Allen J. M., Behringer R. R., Gelinas R. E., Palmiter R. D. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988 Feb;85(3):836–840. doi: 10.1073/pnas.85.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burbelo P. D., Bruggeman L. A., Gabriel G. C., Klotman P. E., Yamada Y. Characterization of a cis-acting element required for efficient transcriptional activation of the collagen IV enhancer. J Biol Chem. 1991 Nov 25;266(33):22297–22302. [PubMed] [Google Scholar]
  11. Celis L., Claessens F., Peeters B., Heyns W., Verhoeven G., Rombauts W. Proteins interacting with an androgen-responsive unit in the C3(1) gene intron. Mol Cell Endocrinol. 1993 Aug;94(2):165–172. doi: 10.1016/0303-7207(93)90165-g. [DOI] [PubMed] [Google Scholar]
  12. Clark A. J., Cowper A., Wallace R., Wright G., Simons J. P. Rescuing transgene expression by co-integration. Biotechnology (N Y) 1992 Nov;10(11):1450–1454. doi: 10.1038/nbt1192-1450. [DOI] [PubMed] [Google Scholar]
  13. Dale T. C., Krnacik M. J., Schmidhauser C., Yang C. L., Bissell M. J., Rosen J. M. High-level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3' untranslated region. Mol Cell Biol. 1992 Mar;12(3):905–914. doi: 10.1128/mcb.12.3.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Devinoy E., Thépot D., Stinnakre M. G., Fontaine M. L., Grabowski H., Puissant C., Pavirani A., Houdebine L. M. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res. 1994 Mar;3(2):79–89. doi: 10.1007/BF01974085. [DOI] [PubMed] [Google Scholar]
  15. Franklin G. C., Donovan M., Adam G. I., Holmgren L., Pfeifer-Ohlsson S., Ohlsson R. Expression of the human PDGF-B gene is regulated by both positively and negatively acting cell type-specific regulatory elements located in the first intron. EMBO J. 1991 Jun;10(6):1365–1373. doi: 10.1002/j.1460-2075.1991.tb07656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greenspan D. S., Lee S. T., Lee B. S., Hoffman G. G. Homology between alpha 2(V) and alpha 1(III) collagen promoters and evidence for negatively acting elements in the alpha 2(V) first intron and 5' flanking sequences. Gene Expr. 1991 Apr;1(1):29–39. [PMC free article] [PubMed] [Google Scholar]
  17. Gross D. S., Garrard W. T. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988;57:159–197. doi: 10.1146/annurev.bi.57.070188.001111. [DOI] [PubMed] [Google Scholar]
  18. Harris S., McClenaghan M., Simons J. P., Ali S., Clark A. J. Developmental regulation of the sheep beta-lactoglobulin gene in the mammary gland of transgenic mice. Dev Genet. 1991;12(4):299–307. doi: 10.1002/dvg.1020120407. [DOI] [PubMed] [Google Scholar]
  19. Hurwitz D. R., Hodges R., Drohan W., Sarver N. Optimizing gene expression in BPV-transformed cells: effects of cell type on enhancer/promoter interaction. Nucleic Acids Res. 1987 Sep 11;15(17):7137–7153. doi: 10.1093/nar/15.17.7137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hurwitz D. R., Nathan M., Barash I., Ilan N., Shani M. Specific combinations of human serum albumin introns direct high level expression of albumin in transfected COS cells and in the milk of transgenic mice. Transgenic Res. 1994 Nov;3(6):365–375. doi: 10.1007/BF01976768. [DOI] [PubMed] [Google Scholar]
  21. Lamb N. J., Fernandez A., Tourkine N., Jeanteur P., Blanchard J. M. Demonstration in living cells of an intragenic negative regulatory element within the rodent c-fos gene. Cell. 1990 May 4;61(3):485–496. doi: 10.1016/0092-8674(90)90530-r. [DOI] [PubMed] [Google Scholar]
  22. Liska D. J., Reed M. J., Sage E. H., Bornstein P. Cell-specific expression of alpha 1(I) collagen-hGH minigenes in transgenic mice. J Cell Biol. 1994 May;125(3):695–704. doi: 10.1083/jcb.125.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manohar A., Anwar R. A. Evidence for a cell-specific negative regulatory element in the first intron of the gene for bovine elastin. Biochem J. 1994 May 15;300(Pt 1):147–152. doi: 10.1042/bj3000147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McKnight R. A., Wall R. J., Hennighausen L. Expression of genomic and cDNA transgenes after co-integration in transgenic mice. Transgenic Res. 1995 Jan;4(1):39–43. doi: 10.1007/BF01976500. [DOI] [PubMed] [Google Scholar]
  25. Meier V. S., Groner B. The nuclear factor YY1 participates in repression of the beta-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction. Mol Cell Biol. 1994 Jan;14(1):128–137. doi: 10.1128/mcb.14.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore D. D., Marks A. R., Buckley D. I., Kapler G., Payvar F., Goodman H. M. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor. Proc Natl Acad Sci U S A. 1985 Feb;82(3):699–702. doi: 10.1073/pnas.82.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ninomiya T., Hirabayashi M., Sagara J., Yuki A. Functions of milk protein gene 5' flanking regions on human growth hormone gene. Mol Reprod Dev. 1994 Mar;37(3):276–283. doi: 10.1002/mrd.1080370306. [DOI] [PubMed] [Google Scholar]
  28. Perret C., L'Horset F., Thomasset M. DNase I-hypersensitive sites are associated, in a tissue-specific manner, with expression of the calbindin-D9k-encoding gene. Gene. 1991 Dec 15;108(2):227–235. doi: 10.1016/0378-1119(91)90438-h. [DOI] [PubMed] [Google Scholar]
  29. Reddy C. D., Reddy E. P. Differential binding of nuclear factors to the intron 1 sequences containing the transcriptional pause site correlates with c-myb expression. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7326–7330. doi: 10.1073/pnas.86.19.7326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rotwein P., Bichell D. P., Kikuchi K. Multifactorial regulation of IGF-I gene expression. Mol Reprod Dev. 1993 Aug;35(4):358–364. doi: 10.1002/mrd.1080350407. [DOI] [PubMed] [Google Scholar]
  31. Sap J., de Magistris L., Stunnenberg H., Vennström B. A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J. 1990 Mar;9(3):887–896. doi: 10.1002/j.1460-2075.1990.tb08186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmitt-Ney M., Happ B., Hofer P., Hynes N. E., Groner B. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis. Mol Endocrinol. 1992 Dec;6(12):1988–1997. doi: 10.1210/mend.6.12.1491685. [DOI] [PubMed] [Google Scholar]
  33. Shani M., Barash I., Nathan M., Ricca G., Searfoss G. H., Dekel I., Faerman A., Givol D., Hurwitz D. R. Expression of human serum albumin in the milk of transgenic mice. Transgenic Res. 1992 Sep;1(5):195–208. doi: 10.1007/BF02524750. [DOI] [PubMed] [Google Scholar]
  34. Simons J. P., McClenaghan M., Clark A. J. Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature. 1987 Aug 6;328(6130):530–532. doi: 10.1038/328530a0. [DOI] [PubMed] [Google Scholar]
  35. Watson C. J., Gordon K. E., Robertson M., Clark A. J. Interaction of DNA-binding proteins with a milk protein gene promoter in vitro: identification of a mammary gland-specific factor. Nucleic Acids Res. 1991 Dec 11;19(23):6603–6610. doi: 10.1093/nar/19.23.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wei Y., Yarus S., Greenberg N. M., Whitsett J., Rosen J. M. Production of human surfactant protein C in milk of transgenic mice. Transgenic Res. 1995 Jul;4(4):232–240. doi: 10.1007/BF01969116. [DOI] [PubMed] [Google Scholar]
  37. Whitelaw C. B., Archibald A. L., Harris S., McClenaghan M., Simons J. P., Clark A. J. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1991 Dec;1(1):3–13. doi: 10.1007/BF02512991. [DOI] [PubMed] [Google Scholar]
  38. Whitelaw C. B., Harris S., McClenaghan M., Simons J. P., Clark A. J. Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem J. 1992 Aug 15;286(Pt 1):31–39. doi: 10.1042/bj2860031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wright G., Carver A., Cottom D., Reeves D., Scott A., Simons P., Wilmut I., Garner I., Colman A. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (N Y) 1991 Sep;9(9):830–834. doi: 10.1038/nbt0991-830. [DOI] [PubMed] [Google Scholar]
  40. Xu L., Wallen R., Patel V., DePinho R. A. Role of first exon/intron sequences in the regulation of myc family oncogenic potency. Oncogene. 1993 Sep;8(9):2547–2553. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES