Abstract
Ricin is a cytotoxic plant protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond at position A4324 in eukaryotic 28S rRNA. Recent studies showed that a four-nucleotide loop, GAGA, can function as a minimum substrate for ricin (the first adenosine corresponds to the site of depurination). We previously clarified the solution structure of this loop by NMR spectroscopy [Orita et al. (1993) Nucleic Acids Res. 21, 5670-5678]. To elucidate further details of the structural basis for recognition of its substrate by ricin, we studied the properties of a synthetic dodecanucleotide, r1C2U3C4A5G6dA7G8A9U10G11A12G (6dA12mer), which forms an RNA hairpin structure with a GdAGA loop and in which the site of depurination is changed from adenosine to 2'-deoxyadenosine. The N-glycosidase activity against the GdAGA loop of the A-chain of ricin was 26 times higher than that against the GAGA loop. NMR studies indicated that the overall structure of the GdAGA loop was similar to that of the GAGA loop with the exception of the sugar puckers of 6dA and 7G. Therefore, it appears that the 2'-hydroxyl group of adenosine at the depurination site (6A) does not participate in the recognition by ricin of the substrate. Since the 2'-hydroxyl group can potentially destabilize the developing positive charge of the putative transition state intermediate, an oxycarbonium ion, the electronic effect may explain, at least in part, the faster rate of depurination of the GdAGA loop compared to that of GAGA loop. We also show that the amino group of 7G is essential for substrate recognition the ricin A-chain.
Full Text
The Full Text of this article is available as a PDF (118.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chou S. H., Flynn P., Reid B. Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers: r(CGCGAAUUCGCG) and r(CGCGUAUACGCG). Biochemistry. 1989 Mar 21;28(6):2422–2435. doi: 10.1021/bi00432a013. [DOI] [PubMed] [Google Scholar]
- Endo Y., Glück A., Wool I. G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. J Mol Biol. 1991 Sep 5;221(1):193–207. doi: 10.1016/0022-2836(91)80214-f. [DOI] [PubMed] [Google Scholar]
- Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987 Jun 15;262(17):8128–8130. [PubMed] [Google Scholar]
- Endo Y., Tsurugi K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem. 1988 Jun 25;263(18):8735–8739. [PubMed] [Google Scholar]
- Glück A., Endo Y., Wool I. G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. J Mol Biol. 1992 Jul 20;226(2):411–424. doi: 10.1016/0022-2836(92)90956-k. [DOI] [PubMed] [Google Scholar]
- Hausner T. P., Atmadja J., Nierhaus K. H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie. 1987 Sep;69(9):911–923. doi: 10.1016/0300-9084(87)90225-2. [DOI] [PubMed] [Google Scholar]
- Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
- Katahira M., Kanagawa M., Sato H., Uesugi S., Fujii S., Kohno T., Maeda T. Formation of sheared G:A base pairs in an RNA duplex modelled after ribozymes, as revealed by NMR. Nucleic Acids Res. 1994 Jul 25;22(14):2752–2759. doi: 10.1093/nar/22.14.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y., Robertus J. D. Analysis of several key active site residues of ricin A chain by mutagenesis and X-ray crystallography. Protein Eng. 1992 Dec;5(8):775–779. doi: 10.1093/protein/5.8.775. [DOI] [PubMed] [Google Scholar]
- Lane A., Martin S. R., Ebel S., Brown T. Solution conformation of a deoxynucleotide containing tandem G.A mismatched base pairs and 3'-overhanging ends in d(GTGAACTT)2. Biochemistry. 1992 Dec 8;31(48):12087–12095. doi: 10.1021/bi00163a018. [DOI] [PubMed] [Google Scholar]
- Li Y., Zon G., Wilson W. D. NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):26–30. doi: 10.1073/pnas.88.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
- Monzingo A. F., Robertus J. D. X-ray analysis of substrate analogs in the ricin A-chain active site. J Mol Biol. 1992 Oct 20;227(4):1136–1145. doi: 10.1016/0022-2836(92)90526-p. [DOI] [PubMed] [Google Scholar]
- Morris K. N., Wool I. G. Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4869–4873. doi: 10.1073/pnas.89.11.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L., Blaustein J. The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim Biophys Acta. 1972 May 9;266(2):543–547. doi: 10.1016/0005-2736(72)90109-5. [DOI] [PubMed] [Google Scholar]
- Orita M., Nishikawa F., Shimayama T., Taira K., Endo Y., Nishikawa S. High-resolution NMR study of a synthetic oligoribonucleotide with a tetranucleotide GAGA loop that is a substrate for the cytotoxic protein, ricin. Nucleic Acids Res. 1993 Dec 11;21(24):5670–5678. doi: 10.1093/nar/21.24.5670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ready M. P., Kim Y., Robertus J. D. Site-directed mutagenesis of ricin A-chain and implications for the mechanism of action. Proteins. 1991;10(3):270–278. doi: 10.1002/prot.340100311. [DOI] [PubMed] [Google Scholar]
- Ren J., Wang Y., Dong Y., Stuart D. I. The N-glycosidase mechanism of ribosome-inactivating proteins implied by crystal structures of alpha-momorcharin. Structure. 1994 Jan 15;2(1):7–16. doi: 10.1016/s0969-2126(00)00004-6. [DOI] [PubMed] [Google Scholar]
- SantaLucia J., Jr, Kierzek R., Turner D. H. Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry. 1990 Sep 18;29(37):8813–8819. doi: 10.1021/bi00489a044. [DOI] [PubMed] [Google Scholar]
- Sklenár V., Miyashiro H., Zon G., Miles H. T., Bax A. Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett. 1986 Nov 10;208(1):94–98. doi: 10.1016/0014-5793(86)81539-3. [DOI] [PubMed] [Google Scholar]
- Weston S. A., Tucker A. D., Thatcher D. R., Derbyshire D. J., Pauptit R. A. X-ray structure of recombinant ricin A-chain at 1.8 A resolution. J Mol Biol. 1994 Dec 9;244(4):410–422. doi: 10.1006/jmbi.1994.1739. [DOI] [PubMed] [Google Scholar]
- van Deurs B., Tønnessen T. I., Petersen O. W., Sandvig K., Olsnes S. Routing of internalized ricin and ricin conjugates to the Golgi complex. J Cell Biol. 1986 Jan;102(1):37–47. doi: 10.1083/jcb.102.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
