Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Mar 1;24(5):924–930. doi: 10.1093/nar/24.5.924

Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions.

J S Hanas 1, C G Gunn 1
PMCID: PMC145705  PMID: 8600461

Abstract

Transcription factor IIIA (TFIIIA), a cysteine-rich regulatory protein, is the prototype for the largest known superfamily of eukaryotic transcription factors. Members of the TFIIIA superfamily contain Cys2His2 zinc finger domains responsible for nucleic acid binding. Xenobiotic metal ions, which lack known biological function, were previously used as probes for the structure and function of steroid hormone receptors which contain Cys2Cys2 zinc finger domains. Structural alterations in cysteine-rich regulatory proteins by such ions in vivo might potentiate carcinogenesis and other disease processes. In the present study cadmium and other xenobiotic metal ions were used to probe the structure and function of TFIIIA. The specific interaction of TFIIIA with the internal control region (ICR) of the 5S RNA gene, as assayed by DNase I protection, was inhibited by Cd2+ ion concentrations of > or = 0.1 microM. Aluminum ions were also found to inhibit the TFIIIA-5S RNA gene interaction, albeit at higher concentrations (> or = 5 microM). Inhibition by either metal ion was not readily reversible. Other xenobiotic metal ions, such as mercury or cesium, were not found to be inhibitory under these conditions. None of these ions at the concentrations used in this study affected the ability of DNase I to digest DNA or restriction enzymes to specifically cleave DNA. Preincubation of TFIIIA bound to 5S RNA with either Cd2+ or Al3+ resulted in subsequent DNA binding upon dilution and RNA removal, whereas preincubation of free TFIIIA with the metal ions resulted in inhibition of subsequent DNA binding. Because 5S rRNA also binds the TFIIIA zinc finger domains, these results indicate that the 5S RNA bound to TFIIIA protects the protein from metal inhibition and implicates the zinc fingers in the inhibition mechanism. The nature of the footprint inhibition indicates that the N-terminal fingers of TFIIIA are affected by the metal ions. Cd2+ and Al3+ ions also inhibited the ability of TFIIIA to bind complementary single-stranded DNA and promote renaturation, as measured by Tris-phosphate agarose gel electrophoresis. This gel assay is sensitive to DNA conformation and Al3+ ions were found to alter the conformation of single- and double-stranded DNA in this assay. The inhibition of TFIIIA function in vitro by xenobiotic metals offers new insights into the structure and function of TFIIIA and TFIIIA-type zinc finger proteins. Inhibition by Cd2+ occurs at much lower concentrations than previously observed with steroid hormone receptors and suggests that Cys2His2 zinc finger proteins may be especially sensitive to such agents in vivo.

Full Text

The Full Text of this article is available as a PDF (125.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakalkin G., Yakovleva T., Selivanova G., Magnusson K. P., Szekely L., Kiseleva E., Klein G., Terenius L., Wiman K. G. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):413–417. doi: 10.1073/pnas.91.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barr M., Jr The teratogenicity of cadmium chloride in two stocks of Wistar rats. Teratology. 1973 Jun;7(3):237–242. doi: 10.1002/tera.1420070304. [DOI] [PubMed] [Google Scholar]
  3. Bernués J., Beltrán R., Casasnovas J. M., Azorín F. DNA-sequence and metal-ion specificity of the formation of *H-DNA. Nucleic Acids Res. 1990 Jul 25;18(14):4067–4073. doi: 10.1093/nar/18.14.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogenhagen D. F., Sakonju S., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell. 1980 Jan;19(1):27–35. doi: 10.1016/0092-8674(80)90385-2. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Buckler A. J., Pelletier J., Haber D. A., Glaser T., Housman D. E. Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development. Mol Cell Biol. 1991 Mar;11(3):1707–1712. doi: 10.1128/mcb.11.3.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christy B. A., Lau L. F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7857–7861. doi: 10.1073/pnas.85.21.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engelke D. R., Ng S. Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell. 1980 Mar;19(3):717–728. doi: 10.1016/s0092-8674(80)80048-1. [DOI] [PubMed] [Google Scholar]
  9. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fiser-Littell R. M., Hanas J. S. Xenopus transcription factor IIIA-dependent DNA renaturation. J Biol Chem. 1988 Nov 15;263(32):17136–17141. [PubMed] [Google Scholar]
  11. Hanas J. S., Duke A. L., Gaskins C. J. Conformation states of Xenopus transcription factor IIIA. Biochemistry. 1989 May 2;28(9):4083–4088. doi: 10.1021/bi00435a068. [DOI] [PubMed] [Google Scholar]
  12. Hanas J. S., Gaskins C. J., Smith J. F., Ogilvie M. K. Structure, function, evolution of transcription factor IIIA. Prog Nucleic Acid Res Mol Biol. 1992;43:205–239. doi: 10.1016/s0079-6603(08)61048-x. [DOI] [PubMed] [Google Scholar]
  13. Hanas J. S., Hazuda D. J., Bogenhagen D. F., Wu F. Y., Wu C. W. Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem. 1983 Dec 10;258(23):14120–14125. [PubMed] [Google Scholar]
  14. Hanas J. S., Hazuda D. J., Wu C. W. Xenopus transcription factor A promotes DNA reassociation. J Biol Chem. 1985 Oct 25;260(24):13316–13320. [PubMed] [Google Scholar]
  15. Honda B. M., Roeder R. G. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell. 1980 Nov;22(1 Pt 1):119–126. doi: 10.1016/0092-8674(80)90160-9. [DOI] [PubMed] [Google Scholar]
  16. Kang S., Wells R. D. Zinc destabilizes DNA Watson-Crick pairs at AGCT. J Biol Chem. 1994 Apr 1;269(13):9528–9532. [PubMed] [Google Scholar]
  17. Kinzler K. W., Ruppert J. M., Bigner S. H., Vogelstein B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature. 1988 Mar 24;332(6162):371–374. doi: 10.1038/332371a0. [DOI] [PubMed] [Google Scholar]
  18. Lee J. E., Hollenberg S. M., Snider L., Turner D. L., Lipnick N., Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science. 1995 May 12;268(5212):836–844. doi: 10.1126/science.7754368. [DOI] [PubMed] [Google Scholar]
  19. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  20. Miller J., McLachlan A. D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. doi: 10.1002/j.1460-2075.1985.tb03825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  22. Pelham H. R., Brown D. D. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4170–4174. doi: 10.1073/pnas.77.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pellegrino G. R., Berg J. M. Identification and characterization of "zinc-finger" domains by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):671–675. doi: 10.1073/pnas.88.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Predki P. F., Sarkar B. Effect of replacement of "zinc finger" zinc on estrogen receptor DNA interactions. J Biol Chem. 1992 Mar 25;267(9):5842–5846. [PubMed] [Google Scholar]
  25. Radisch B., Luck W., Nau H. Cadmium concentrations in milk and blood of smoking mothers. Toxicol Lett. 1987 Apr;36(2):147–152. doi: 10.1016/0378-4274(87)90178-0. [DOI] [PubMed] [Google Scholar]
  26. Sakonju S., Bogenhagen D. F., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region. Cell. 1980 Jan;19(1):13–25. doi: 10.1016/0092-8674(80)90384-0. [DOI] [PubMed] [Google Scholar]
  27. Simons S. S., Jr, Chakraborti P. K., Cavanaugh A. H. Arsenite and cadmium(II) as probes of glucocorticoid receptor structure and function. J Biol Chem. 1990 Feb 5;265(4):1938–1945. [PubMed] [Google Scholar]
  28. Smith J. F., Hawkins J., Leonard R. E., Hanas J. S. Structural elements in the N-terminal half of transcription factor IIIA required for factor binding to the 5S RNA gene internal control region. Nucleic Acids Res. 1991 Dec 25;19(24):6871–6876. doi: 10.1093/nar/19.24.6871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suzuki M., Takahashi K., Kawazoe Y., Sakumi K., Sekiguchi M. Inhibitory effect of cadmium and mercury ions on transcription of the ada gene. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1517–1521. doi: 10.1016/0006-291x(91)91744-w. [DOI] [PubMed] [Google Scholar]
  30. Takenaka S., Oldiges H., König H., Hochrainer D., Oberdörster G. Carcinogenicity of cadmium chloride aerosols in W rats. J Natl Cancer Inst. 1983 Feb;70(2):367–373. [PubMed] [Google Scholar]
  31. Verbost P. M., Flik G., Lock R. A., Wendelaar Bonga S. E. Cadmium inhibits plasma membrane calcium transport. J Membr Biol. 1988 May;102(2):97–104. doi: 10.1007/BF01870448. [DOI] [PubMed] [Google Scholar]
  32. Wade G. G., Mandel R., Ryser H. J. Marked synergism of dimethylnitrosamine carcinogenesis in rats exposed to cadmium. Cancer Res. 1987 Dec 15;47(24 Pt 1):6606–6613. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES