Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Mar 1;24(5):914–923. doi: 10.1093/nar/24.5.914

Molecular structure of a gypsy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses.

T M Alberola 1, R de Frutos 1
PMCID: PMC145713  PMID: 8600460

Abstract

We have determined the nucleotide sequence of a 7.5 kb full-size gypsy element from Drosophila subobscura strain H-271. Comparative analyses were carried out on the sequence and molecular structure of gypsy elements of D.subobscura (gypsyDs), D.melanogaster (gypsyDm) and D.virilis (gypsyDv). The three elements show a structure that maintains a common mechanism of expression. ORF1 and ORF2 show typical motifs of gag and pol genes respectively in the three gypsy elements and could encode functional proteins necessary for intracellular expansion. In the three ORF1 proteins an arginine-rich region was found which could constitute a RNA binding motif. The main differences among the gypsy elements are found in ORF3 (env-like gene); gypsyDm encodes functional env proteins, whereas gypsyDs and gypsyDv ORF3s lack some motifs essential for functionality of this protein. On the basis of these results, while gypsyDm is the first insect retrovirus described, gypsyDs and gypsyDv could constitute degenerate forms of these retroviruses. In this context, we have found some evidence that gypsyDm could have recently infected some D.subobscura strains. Comparative analyses of divergence and phylogenetic relationships of gypsy elements indicate that the gypsy elements belonging to species of different subgenera (gypsyDs and gypsyDv) are closer than gypsy elements of species belonging to the same subgenus (gypsyDs and gypsyDm). These data are congruent with horizontal transfer of gypsy elements among different Drosophila spp.

Full Text

The Full Text of this article is available as a PDF (199.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberola T. M., de Frutos R. Gypsy homologous sequences in Drosophila subobscura (gypsyDS). J Mol Evol. 1993 Feb;36(2):127–135. doi: 10.1007/BF00166248. [DOI] [PubMed] [Google Scholar]
  2. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  3. Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
  4. Bucheton A., Vaury C., Chaboissier M. C., Abad P., Pélisson A., Simonelig M. I elements and the Drosophila genome. Genetica. 1992;86(1-3):175–190. doi: 10.1007/BF00133719. [DOI] [PubMed] [Google Scholar]
  5. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  6. Capy P., Anxolabéhère D., Langin T. The strange phylogenies of transposable elements: are horizontal transfers the only explantation? Trends Genet. 1994 Jan;10(1):7–12. doi: 10.1016/0168-9525(94)90012-4. [DOI] [PubMed] [Google Scholar]
  7. Capy P., Koga A., David J. R., Hartl D. L. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics. 1992 Mar;130(3):499–506. doi: 10.1093/genetics/130.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Clark D. J., Bilanchone V. W., Haywood L. J., Dildine S. L., Sandmeyer S. B. A yeast sigma composite element, TY3, has properties of a retrotransposon. J Biol Chem. 1988 Jan 25;263(3):1413–1423. [PubMed] [Google Scholar]
  10. Clark J. B., Maddison W. P., Kidwell M. G. Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol Biol Evol. 1994 Jan;11(1):40–50. doi: 10.1093/oxfordjournals.molbev.a040091. [DOI] [PubMed] [Google Scholar]
  11. Daniels S. B., Peterson K. R., Strausbaugh L. D., Kidwell M. G., Chovnick A. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics. 1990 Feb;124(2):339–355. doi: 10.1093/genetics/124.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doolittle R. F., Feng D. F., Johnson M. S., McClure M. A. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. doi: 10.1086/416128. [DOI] [PubMed] [Google Scholar]
  13. Friesen P. D., Nissen M. S. Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol Cell Biol. 1990 Jun;10(6):3067–3077. doi: 10.1128/mcb.10.6.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grandbastien M. A. Retroelements in higher plants. Trends Genet. 1992 Mar;8(3):103–108. doi: 10.1016/0168-9525(92)90198-d. [DOI] [PubMed] [Google Scholar]
  15. Hagemann S., Miller W. J., Pinsker W. Two distinct P element subfamilies in the genome of Drosophila bifasciata. Mol Gen Genet. 1994 Jul 25;244(2):168–175. doi: 10.1007/BF00283519. [DOI] [PubMed] [Google Scholar]
  16. Hansen L. J., Chalker D. L., Sandmeyer S. B. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol Cell Biol. 1988 Dec;8(12):5245–5256. doi: 10.1128/mcb.8.12.5245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  18. Houck M. A., Clark J. B., Peterson K. R., Kidwell M. G. Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science. 1991 Sep 6;253(5024):1125–1128. doi: 10.1126/science.1653453. [DOI] [PubMed] [Google Scholar]
  19. Inouye S., Yuki S., Saigo K. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur J Biochem. 1986 Jan 15;154(2):417–425. doi: 10.1111/j.1432-1033.1986.tb09414.x. [DOI] [PubMed] [Google Scholar]
  20. Kidwell M. G. Lateral transfer in natural populations of eukaryotes. Annu Rev Genet. 1993;27:235–256. doi: 10.1146/annurev.ge.27.120193.001315. [DOI] [PubMed] [Google Scholar]
  21. Kim A. I., Belyaeva E. S., Aslanian M. M. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol Gen Genet. 1990 Nov;224(2):303–308. doi: 10.1007/BF00271566. [DOI] [PubMed] [Google Scholar]
  22. Kim A. I., Belyaeva E. S. Transposition of mobile elements gypsy (mdg4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol Gen Genet. 1991 Oct;229(3):437–444. doi: 10.1007/BF00267467. [DOI] [PubMed] [Google Scholar]
  23. Kim A., Terzian C., Santamaria P., Pélisson A., Purd'homme N., Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1285–1289. doi: 10.1073/pnas.91.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lambertsson A., Andersson S., Johansson T. Cloning and characterization of variable-sized gypsy mobile elements in Drosophila melanogaster. Plasmid. 1989 Jul;22(1):22–31. doi: 10.1016/0147-619x(89)90032-2. [DOI] [PubMed] [Google Scholar]
  25. Lankenau D. H., Huijser P., Jansen E., Miedema K., Hennig W. Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol. 1988 Nov 20;204(2):233–246. doi: 10.1016/0022-2836(88)90572-4. [DOI] [PubMed] [Google Scholar]
  26. Lerch R. A., Friesen P. D. The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase. J Virol. 1992 Mar;66(3):1590–1601. doi: 10.1128/jvi.66.3.1590-1601.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levin H. L., Weaver D. C., Boeke J. D. Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol. 1990 Dec;10(12):6791–6798. doi: 10.1128/mcb.10.12.6791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lyubomirskaya N. V., Arkhipova I. R., Ilyin Y. V., Kim A. I. Molecular analysis of the gypsy (mdg4) retrotransposon in two Drosophila melanogaster strains differing by genetic instability. Mol Gen Genet. 1990 Sep;223(2):305–309. doi: 10.1007/BF00265067. [DOI] [PubMed] [Google Scholar]
  29. Marlor R. L., Parkhurst S. M., Corces V. G. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol. 1986 Apr;6(4):1129–1134. doi: 10.1128/mcb.6.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mazo A. M., Mizrokhi L. J., Karavanov A. A., Sedkov Y. A., Krichevskaja A. A., Ilyin Y. V. Suppression in Drosophila: su(Hw) and su(f) gene products interact with a region of gypsy (mdg4) regulating its transcriptional activity. EMBO J. 1989 Mar;8(3):903–911. doi: 10.1002/j.1460-2075.1989.tb03451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McHale M. T., Roberts I. N., Noble S. M., Beaumont C., Whitehead M. P., Seth D., Oliver R. P. CfT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet. 1992 Jun;233(3):337–347. doi: 10.1007/BF00265429. [DOI] [PubMed] [Google Scholar]
  32. Michaille J. J., Mathavan S., Gaillard J., Garel A. The complete sequence of mag, a new retrotransposon in Bombyx mori. Nucleic Acids Res. 1990 Feb 11;18(3):674–674. doi: 10.1093/nar/18.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mizrokhi L. J., Mazo A. M. Cloning and analysis of the mobile element gypsy from D. virilis. Nucleic Acids Res. 1991 Feb 25;19(4):913–916. doi: 10.1093/nar/19.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Modolell J., Bender W., Meselson M. Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1678–1682. doi: 10.1073/pnas.80.6.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Montchamp-Moreau C., Ronsseray S., Jacques M., Lehmann M., Anxolabéhère D. Distribution and conservation of sequences homologous to the 1731 retrotransposon in Drosophila. Mol Biol Evol. 1993 Jul;10(4):791–803. doi: 10.1093/oxfordjournals.molbev.a040049. [DOI] [PubMed] [Google Scholar]
  36. Peifer M., Bender W. Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9650–9654. doi: 10.1073/pnas.85.24.9650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pélisson A., Song S. U., Prud'homme N., Smith P. A., Bucheton A., Corces V. G. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 1994 Sep 15;13(18):4401–4411. doi: 10.1002/j.1460-2075.1994.tb06760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature. 1984 Dec 13;312(5995):659–661. doi: 10.1038/312659a0. [DOI] [PubMed] [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Scheinker V. S., Lozovskaya E. R., Bishop J. G., Corces V. G., Evgen'ev M. B. A long terminal repeat-containing retrotransposon is mobilized during hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9615–9619. doi: 10.1073/pnas.87.24.9615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith M. W., Feng D. F., Doolittle R. F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci. 1992 Dec;17(12):489–493. doi: 10.1016/0968-0004(92)90335-7. [DOI] [PubMed] [Google Scholar]
  42. Smith P. A., Corces V. G. Drosophila transposable elements: mechanisms of mutagenesis and interactions with the host genome. Adv Genet. 1991;29:229–300. doi: 10.1016/s0065-2660(08)60109-1. [DOI] [PubMed] [Google Scholar]
  43. Smyth D. R., Kalitsis P., Joseph J. L., Sentry J. W. Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5015–5019. doi: 10.1073/pnas.86.13.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Song S. U., Gerasimova T., Kurkulos M., Boeke J. D., Corces V. G. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. doi: 10.1101/gad.8.17.2046. [DOI] [PubMed] [Google Scholar]
  45. Springer M. S., Britten R. J. Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol. 1993 Nov;10(6):1370–1379. doi: 10.1093/oxfordjournals.molbev.a040065. [DOI] [PubMed] [Google Scholar]
  46. Springer M. S., Davidson E. H., Britten R. J. Retroviral-like element in a marine invertebrate. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8401–8404. doi: 10.1073/pnas.88.19.8401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stacey S. N., Lansman R. A., Brock H. W., Grigliatti T. A. Distribution and conservation of mobile elements in the genus Drosophila. Mol Biol Evol. 1986 Nov;3(6):522–534. doi: 10.1093/oxfordjournals.molbev.a040413. [DOI] [PubMed] [Google Scholar]
  48. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tanda S., Mullor J. L., Corces V. G. The Drosophila tom retrotransposon encodes an envelope protein. Mol Cell Biol. 1994 Aug;14(8):5392–5401. doi: 10.1128/mcb.14.8.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tanda S., Shrimpton A. E., Chueh L. L., Itayama H., Matsubayashi H., Saigo K., Tobari Y. N., Langley C. H. Retrovirus-like features and site specific insertions of a transposable element, tom, in Drosophila ananassae. Mol Gen Genet. 1988 Nov;214(3):405–411. doi: 10.1007/BF00330473. [DOI] [PubMed] [Google Scholar]
  51. Terol J., Perez-Alonso M., de Frutos R. In situ localization of the Antennapedia gene on the chromosomes of nine Drosophila species of the obscura group. Hereditas. 1991;114(2):131–139. doi: 10.1111/j.1601-5223.1991.tb00318.x. [DOI] [PubMed] [Google Scholar]
  52. Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Xiong Y., Eickbush T. H. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol. 1988 Nov;5(6):675–690. doi: 10.1093/oxfordjournals.molbev.a040521. [DOI] [PubMed] [Google Scholar]
  54. Yuki S., Inouye S., Ishimaru S., Saigo K. Nucleotide sequence characterization of a Drosophila retrotransposon, 412. Eur J Biochem. 1986 Jul 15;158(2):403–410. doi: 10.1111/j.1432-1033.1986.tb09767.x. [DOI] [PubMed] [Google Scholar]
  55. de Frutos R., Peterson K. R., Kidwell M. G. Distribution of Drosophila melanogaster transposable element sequences in species of the obscura group. Chromosoma. 1992 Mar;101(5-6):293–300. doi: 10.1007/BF00346008. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES