Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Mar 15;24(6):1144–1148. doi: 10.1093/nar/24.6.1144

Cassette labeling for facile construction of energy transfer fluorescent primers.

J Ju 1, A N Glazer 1, R A Mathies 1
PMCID: PMC145743  PMID: 8604350

Abstract

DNA primer sets, labeled with two fluorescent dyes to exploit fluorescence energy transfer (ET), can be efficiently excited with a single laser line and emit strong fluorescence at distinctive wavelengths. Such ET primers are superior to single fluorophore-labeled primers for DNA sequencing and other multiple color-based analyses [J. Ju, C. Ruan, C. W. Fuller, A. N. Glazer and R. A. Mathies (1995) Proc. Natl. Acad. Sci. USA 92, 4347-4351]. We describe here a novel method of constructing fluorescent primers using a universal ET cassette that can be incorporated by conventional synthesis at the 5'-end of an oligonucleotide primer of any sequence. In this cassette, the donor and acceptor fluorophores are separated by a polymer spacer (S6) formed by six 1',2'-dideoxyribose phosphate monomers (S). The donor is attached to the 5' side of the ribose spacer and the acceptor to a modified thymidine attached to the 3' end of the ribose spacer in the ET cassette. The resulting primers, labeled with 6-carboxy-fluorescein as the donor and other fluorescein and rhodamine dyes as acceptors, display well-separated acceptor emission spectra with 2-12-fold enhanced fluorescence intensity relative to that of the corresponding single dye-labeled primers. With single- stranded M13mp18DNA as the template, a typical run with these ET primers on a capillary sequencer provides DNA sequences with 99% accuracy in the first 550 bases using the same amount of DNA template as that typically required using a four-color slab gel automated sequencer.

Full Text

The Full Text of this article is available as a PDF (149.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson S. C., Mathies R. A., Glazer A. N. Heterodimeric DNA-binding dyes designed for energy transfer: stability and applications of the DNA complexes. Nucleic Acids Res. 1993 Dec 11;21(24):5720–5726. doi: 10.1093/nar/21.24.5720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benson S. C., Singh P., Glazer A. N. Heterodimeric DNA-binding dyes designed for energy transfer: synthesis and spectroscopic properties. Nucleic Acids Res. 1993 Dec 11;21(24):5727–5735. doi: 10.1093/nar/21.24.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fairclough R. H., Cantor C. R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 1978;48:347–379. doi: 10.1016/s0076-6879(78)48019-x. [DOI] [PubMed] [Google Scholar]
  4. Glazer A. N., Stryer L. Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J. 1983 Sep;43(3):383–386. doi: 10.1016/S0006-3495(83)84361-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gohlke C., Murchie A. I., Lilley D. M., Clegg R. M. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11660–11664. doi: 10.1073/pnas.91.24.11660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ju J., Kheterpal I., Scherer J. R., Ruan C., Fuller C. W., Glazer A. N., Mathies R. A. Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for DNA sequencing and analysis. Anal Biochem. 1995 Oct 10;231(1):131–140. doi: 10.1006/abio.1995.1512. [DOI] [PubMed] [Google Scholar]
  7. Ju J., Ruan C., Fuller C. W., Glazer A. N., Mathies R. A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4347–4351. doi: 10.1073/pnas.92.10.4347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kalnik M. W., Chang C. N., Grollman A. P., Patel D. J. NMR studies of abasic sites in DNA duplexes: deoxyadenosine stacks into the helix opposite the cyclic analogue of 2-deoxyribose. Biochemistry. 1988 Feb 9;27(3):924–931. doi: 10.1021/bi00403a013. [DOI] [PubMed] [Google Scholar]
  9. Konrad K. D., Pentoney S. L., Jr Contribution of secondary structure to DNA mobility in capillary gels. Electrophoresis. 1993 May-Jun;14(5-6):502–508. doi: 10.1002/elps.1150140177. [DOI] [PubMed] [Google Scholar]
  10. Lee L. G., Connell C. R., Woo S. L., Cheng R. D., McArdle B. F., Fuller C. W., Halloran N. D., Wilson R. K. DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Res. 1992 May 25;20(10):2471–2483. doi: 10.1093/nar/20.10.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mergny J. L., Garestier T., Rougée M., Lebedev A. V., Chassignol M., Thuong N. T., Hélène C. Fluorescence energy transfer between two triple helix-forming oligonucleotides bound to duplex DNA. Biochemistry. 1994 Dec 27;33(51):15321–15328. doi: 10.1021/bi00255a013. [DOI] [PubMed] [Google Scholar]
  12. Middendorf L. R., Bruce J. C., Bruce R. C., Eckles R. D., Grone D. L., Roemer S. C., Sloniker G. D., Steffens D. L., Sutter S. L., Brumbaugh J. A. Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis. 1992 Aug;13(8):487–494. doi: 10.1002/elps.11501301103. [DOI] [PubMed] [Google Scholar]
  13. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Selvin P. R., Hearst J. E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10024–10028. doi: 10.1073/pnas.91.21.10024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith L. M., Sanders J. Z., Kaiser R. J., Hughes P., Dodd C., Connell C. R., Heiner C., Kent S. B., Hood L. E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986 Jun 12;321(6071):674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
  17. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
  18. Takeshita M., Chang C. N., Johnson F., Will S., Grollman A. P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem. 1987 Jul 25;262(21):10171–10179. [PubMed] [Google Scholar]
  19. Tuschl T., Gohlke C., Jovin T. M., Westhof E., Eckstein F. A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science. 1994 Nov 4;266(5186):785–789. doi: 10.1126/science.7973630. [DOI] [PubMed] [Google Scholar]
  20. Wang Y., Ju J., Carpenter B. A., Atherton J. M., Sensabaugh G. F., Mathies R. A. Rapid sizing of short tandem repeat alleles using capillary array electrophoresis and energy-transfer fluorescent primers. Anal Chem. 1995 Apr 1;67(7):1197–1203. doi: 10.1021/ac00103a010. [DOI] [PubMed] [Google Scholar]
  21. Woolley A. T., Mathies R. A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem. 1995 Oct 15;67(20):3676–3680. doi: 10.1021/ac00116a010. [DOI] [PubMed] [Google Scholar]
  22. Wu P., Brand L. Conformational flexibility in a staphylococcal nuclease mutant K45C from time-resolved resonance energy transfer measurements. Biochemistry. 1994 Aug 30;33(34):10457–10462. doi: 10.1021/bi00200a029. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES