Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Mar 15;24(6):1127–1135. doi: 10.1093/nar/24.6.1127

Quinazoline-2,4(1H,3H)-dione as a substitute for thymine in triple-helix forming oligonucleotides: a reassessment.

J Michel 1, J J Toulmé 1, J Vercauteren 1, S Moreau 1
PMCID: PMC145745  PMID: 8604348

Abstract

A major limitation in triple-helix formation arises from the weak energy of interaction between the third strand and the double-stranded target. We tried to increase the stacking interaction contribution within the third strand by extending the aromatic domain of thymine. We report here the use of 2,4-quinazolinedione as a substitute for thymine in the canonical TA*T triplet. The synthesis and the characterization of the quinazoline beta nucleoside Q and of its phosphoramidite derivative is described. Triple-helix- forming oligonucleotides incorporating Q have been prepared and their ability to form triplexes has been evaluated by UV-monitored thermal denaturation measurements. The introduction of one or multiple Q residues, either contiguous or remote from each other, slightly destabilized triple-stranded structures, whatever the nucleic acid base composition (pyrimidine or GT) of the third strand.

Full Text

The Full Text of this article is available as a PDF (125.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  2. Brossalina E., Pascolo E., Toulmé J. J. The binding of an antisense oligonucleotide to a hairpin structure via triplex formation inhibits chemical and biological reactions. Nucleic Acids Res. 1993 Dec 11;21(24):5616–5622. doi: 10.1093/nar/21.24.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Inoue H., Imura A., Ohtsuka E. Synthesis and hybridization of dodecadeoxyribonucleotides containing a fluorescent pyridopyrimidine deoxynucleoside. Nucleic Acids Res. 1985 Oct 11;13(19):7119–7128. doi: 10.1093/nar/13.19.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Miller P. S., Cushman C. D. Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A triads. Biochemistry. 1993 Mar 30;32(12):2999–3004. doi: 10.1021/bi00063a010. [DOI] [PubMed] [Google Scholar]
  5. Morvan F., Rayner B., Imbach J. L., Thenet S., Bertrand J. R., Paoletti J., Malvy C., Paoletti C. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases. Nucleic Acids Res. 1987 Apr 24;15(8):3421–3437. doi: 10.1093/nar/15.8.3421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
  7. Pascolo E., Blonski C., Shire D., Toulmé J. J. Antisense effect of oligodeoxynucleotides complementary to the mini-exon sequence of the protozoan parasite Leishmania amazonensis. Biochimie. 1993;75(1-2):43–47. doi: 10.1016/0300-9084(93)90023-l. [DOI] [PubMed] [Google Scholar]
  8. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
  9. Pilch D. S., Brousseau R., Shafer R. H. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices. Nucleic Acids Res. 1990 Oct 11;18(19):5743–5750. doi: 10.1093/nar/18.19.5743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Radhakrishnan I., Patel D. J., Priestly E. S., Nash H. M., Dervan P. B. NMR structural studies on a nonnatural deoxyribonucleoside which mediates recognition of GC base pairs in pyrimidine-purine-pyrimidine DNA triplexes. Biochemistry. 1993 Oct 19;32(41):11228–11234. doi: 10.1021/bi00092a037. [DOI] [PubMed] [Google Scholar]
  11. Radhakrishnan I., de los Santos C., Patel D. J. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. J Mol Biol. 1991 Oct 20;221(4):1403–1418. [PubMed] [Google Scholar]
  12. Rajagopal P., Feigon J. Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4. Nature. 1989 Jun 22;339(6226):637–640. doi: 10.1038/339637a0. [DOI] [PubMed] [Google Scholar]
  13. Staubli A. B., Dervan P. B. Sequence specificity of the non-natural pyrido[2,3-d]pyrimidine nucleoside in triple helix formation. Nucleic Acids Res. 1994 Jul 11;22(13):2637–2642. doi: 10.1093/nar/22.13.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stout M. G., Robins R. K. The synthesis of some quinazoline nucleosides. J Org Chem. 1968 Mar;33(3):1219–1225. doi: 10.1021/jo01267a061. [DOI] [PubMed] [Google Scholar]
  15. Verspieren P., Loreau N., Thuong N. T., Shire D., Toulmé J. J. Effect of RNA secondary structure and modified bases on the inhibition of trypanosomatid protein synthesis in cell free extracts by antisense oligodeoxynucleotides. Nucleic Acids Res. 1990 Aug 25;18(16):4711–4717. doi: 10.1093/nar/18.16.4711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES