Skip to main content
Immunology logoLink to Immunology
. 1979 Feb;36(2):199–205.

Macrophage fatty acid composition and phagocytosis: effect of unsaturation on cellular phagocytic activity.

A J Schroit, R Gallily
PMCID: PMC1457479  PMID: 374248

Abstract

In order to manipulate the physical properties of the macrophages membrane, methods were developed which potentiated the incorporation of exogenously supplied fatty acids into membrane lipids. Chromatograms of macrophages which were grown in the presence of a variety of fatty acids demonstrated that exogenously supplied unsaturated fatty acids (palmitoleic, oleic, elaidic, linoleic, linolenic and arachidonic acids) were readily incorporated into the cells and selectively altered the fatty acyl composition of macrophage phospholipids. Up to 38% of the total cellular phospholipids were found to be derived from the exogenously added fatty acid supplements. The incorporation of the different fatty acids into cellular phospholipids had striking effects on cellular phagocytic activity. These effects were found to correlate with the degree of unsaturation, and the cis- or trans-double bond configuration. Thus, macrophage phagocytic ingestion rates of 125I-labelled Shigella flexneri were found to alter by more than 2-fold after the cells were cultivated in the presence of cis unsaturated fatty acids.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. BLICKENS D. A., DILUZIO N. R. METABOLISM OF METHY PALMITATE, A PHAGOCYTIC AND IMMUNOLOGIC DEPRESSANT, AND ITS INFLUENCE ON TISSUE LIPIDS. J Reticuloendothel Soc. 1965 May;2:60–74. [PubMed] [Google Scholar]
  3. Berlin R. D., Fera J. P. Changes in membrane microviscosity associated with phagocytosis: effects of colchicine. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1072–1076. doi: 10.1073/pnas.74.3.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COOPER G. N. FUNCTIONAL MODIFICATION OF RETICULOENDOTHELIAL CELLS BY SIMPLE TRIGLYCERIDES. J Reticuloendothel Soc. 1964 Jan;1:50–67. [PubMed] [Google Scholar]
  5. COOPER G. N., WEST D. Effects of simple lipids on the phagocytic properties of peritoneal macrophages. 1. Stimulatory effects of glyceryl trioleate. Aust J Exp Biol Med Sci. 1962 Dec;40:485–498. doi: 10.1038/icb.1962.52. [DOI] [PubMed] [Google Scholar]
  6. Carpenter R. R. Phagocytosis by guinea pig splenic cells of Escherichia coli and protein-coated bentonite particles labeled with iodine-125. J Immunol. 1966 Jun;96(6):992–999. [PubMed] [Google Scholar]
  7. DILUZIO N. R., WOOLES W. R. DEPRESSION OF PHAGOCYTIC ACTIVITY AND IMMUNE RESPONSE BY METHYL PALMITATE. Am J Physiol. 1964 May;206:939–943. doi: 10.1152/ajplegacy.1964.206.5.939. [DOI] [PubMed] [Google Scholar]
  8. Dianzani M. U., Torrielli M. V., Canuto R. A., Garcea R., Feo F. The influence of enrichment with cholesterol on the phagocytic activity of rat macrophages. J Pathol. 1976 Apr;118(4):193–199. doi: 10.1002/path.1711180402. [DOI] [PubMed] [Google Scholar]
  9. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  10. Griffin F. M., Jr, Silverstein S. C. Segmental response of the macrophage plasma membrane to a phagocytic stimulus. J Exp Med. 1974 Feb 1;139(2):323–336. doi: 10.1084/jem.139.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horwitz A. F., Hatten M. E., Burger M. M. Membrane fatty acid replacements and their effect on growth and lectin-induced agglutinability. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3115–3119. doi: 10.1073/pnas.71.8.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  13. Mahoney E. M., Hamill A. L., Scott W. A., Cohn Z. A. Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4895–4899. doi: 10.1073/pnas.74.11.4895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mason R. J., Stossel T. P., Vaughan M. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J Clin Invest. 1972 Sep;51(9):2399–2407. doi: 10.1172/JCI107052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meade C. J., Mertin J. The mechanism of immunoinhibition by arachidonic and linoleic acid: effects on the lymphoid and reticulo-endothelial systems. Int Arch Allergy Appl Immunol. 1976;51(1):2–24. doi: 10.1159/000231575. [DOI] [PubMed] [Google Scholar]
  16. Moore N. F., Patzer E. J., Barenholz Y., Wagner R. R. Effect of phospholipase C and cholesterol oxidase on membrane integrity, microviscosity, and infectivity of vesicular stomatitis virus. Biochemistry. 1977 Oct 18;16(21):4708–4715. doi: 10.1021/bi00640a027. [DOI] [PubMed] [Google Scholar]
  17. Schroit A. J., Gallily R. Quantitative in vitro phagocytic rate measurements. J Immunol Methods. 1977;17(1-2):123–130. doi: 10.1016/0022-1759(77)90083-7. [DOI] [PubMed] [Google Scholar]
  18. Schroit A. J., Rottem S., Gallily R. Motion of spin-labeled fatty acids in murine macrophages. Relation to cellular phagocytic activity. Biochim Biophys Acta. 1976 Mar 19;426(3):499–512. doi: 10.1016/0005-2736(76)90394-1. [DOI] [PubMed] [Google Scholar]
  19. Singer S. J. Molecular biology of cellular membranes with applications to immunology. Adv Immunol. 1974;19(0):1–66. doi: 10.1016/s0065-2776(08)60251-5. [DOI] [PubMed] [Google Scholar]
  20. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  21. Smolen J. E., Shohet S. B. Remodeling of granulocyte membrane fatty acids during phagocytosis. J Clin Invest. 1974 Mar;53(3):726–734. doi: 10.1172/JCI107611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spratt M. G., Kratzing C. C. Oleic acid as a depressant of reticuloendothelial activity in rats and mice. J Reticuloendothel Soc. 1975 Mar;17(3):135–140. [PubMed] [Google Scholar]
  23. Van Oss C. J., Gillman C. F., Neumann A. W. Phagocytosis as a surface phenomenon. IV. The minimum size and composition of antigen-antibody complexes that can become phagocytized. Immunol Commun. 1974;3(1):77–84. doi: 10.3109/08820137409055746. [DOI] [PubMed] [Google Scholar]
  24. Walker S. M., Lucas Z. J. Cytotoxic activity of lymphocytes. I. Assay for cytotoxicity by rubidium exchange at isotopic equilibrium. J Immunol. 1972 Dec;109(6):1223–1232. [PubMed] [Google Scholar]
  25. Wisnieski B. J., Williams R. E., Fox C. F. Manipulation of fatty acid composition in animal cells grown in culture. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3669–3673. doi: 10.1073/pnas.70.12.3669. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES