Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Mar 15;24(6):1099–1104. doi: 10.1093/nar/24.6.1099

Purification of a novel UV-damaged-DNA binding protein highly specific for (6-4) photoproduct.

M Wakasugi 1, Y Abe 1, Y Yoshida 1, T Matsunaga 1, O Nikaido 1
PMCID: PMC145755  PMID: 8604344

Abstract

UV damage-specific binding proteins are considered to play important roles in early responses of cells irradiated with UV, including damage recognition in the DNA repair process. We have surveyed nuclear and cytoplasmic proteins which bind selectively to UV-irradiated DNA using an electrophoretic mobility shift assay. We detected four distinct binding activities with different mobilities in fractions separated from HeLa cells by heparin chromatography. Three of them were found in nuclear extracts and one in cytoplasmic extracts. We purified one of the binding factors from nuclear extracts to homogeneity, which was designated NF-10 (the 10th fraction of nuclear extract on heparin chromatography). It migrated as a 40 kDa polypeptide in SDS-PAGE, and bound to UV-irradiated double- stranded DNA but not to unirradiated DNA. The binding pattern of the NF-10 protein to DNA irradiated with UV corresponded to the induction kinetics of (6-4) photoproduct. Removal of (6-4) photoproducts from UV- irradiated DNA by (6-4) photoproduct-specific photolyase diminished the binding of NF-10 protein. These results suggest that the NF-10 protein binds to UV-damaged DNA through (6-4) photoproduct. Immunoblot analysis using a monoclonal antibody revealed that the NF-10 protein was expressed in cell lines from all complementation groups of xeroderma pigmentosum, indicating that the NF-10 protein is a novel UV-damaged-DNA binding protein.

Full Text

The Full Text of this article is available as a PDF (134.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboussekhra A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protić M., Hübscher U., Egly J. M., Wood R. D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995 Mar 24;80(6):859–868. doi: 10.1016/0092-8674(95)90289-9. [DOI] [PubMed] [Google Scholar]
  2. Abramić M., Levine A. S., Protić M. Purification of an ultraviolet-inducible, damage-specific DNA-binding protein from primate cells. J Biol Chem. 1991 Nov 25;266(33):22493–22500. [PubMed] [Google Scholar]
  3. Chu G., Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science. 1988 Oct 28;242(4878):564–567. doi: 10.1126/science.3175673. [DOI] [PubMed] [Google Scholar]
  4. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feldberg R. S., Grossman L. A DNA binding protein from human placenta specific for ultraviolet damaged DNA. Biochemistry. 1976 Jun 1;15(11):2402–2408. doi: 10.1021/bi00656a024. [DOI] [PubMed] [Google Scholar]
  6. Feldberg R. S., Lucas J. L., Dannenberg A. A damage-specific DNA binding protein. Large scale purification from human placenta and characterization. J Biol Chem. 1982 Jun 10;257(11):6394–6401. [PubMed] [Google Scholar]
  7. He Z., Henricksen L. A., Wold M. S., Ingles C. J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature. 1995 Apr 6;374(6522):566–569. doi: 10.1038/374566a0. [DOI] [PubMed] [Google Scholar]
  8. Hirschfeld S., Levine A. S., Ozato K., Protić M. A constitutive damage-specific DNA-binding protein is synthesized at higher levels in UV-irradiated primate cells. Mol Cell Biol. 1990 May;10(5):2041–2048. doi: 10.1128/mcb.10.5.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoeijmakers J. H. Nucleotide excision repair. II: From yeast to mammals. Trends Genet. 1993 Jun;9(6):211–217. doi: 10.1016/0168-9525(93)90121-w. [DOI] [PubMed] [Google Scholar]
  10. Hwang B. J., Chu G. Purification and characterization of a human protein that binds to damaged DNA. Biochemistry. 1993 Feb 16;32(6):1657–1666. doi: 10.1021/bi00057a033. [DOI] [PubMed] [Google Scholar]
  11. Jones C. J., Wood R. D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry. 1993 Nov 16;32(45):12096–12104. doi: 10.1021/bi00096a021. [DOI] [PubMed] [Google Scholar]
  12. Keeney S., Chang G. J., Linn S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem. 1993 Oct 5;268(28):21293–21300. [PubMed] [Google Scholar]
  13. Keeney S., Wein H., Linn S. Biochemical heterogeneity in xeroderma pigmentosum complementation group E. Mutat Res. 1992 Jan;273(1):49–56. doi: 10.1016/0921-8777(92)90049-9. [DOI] [PubMed] [Google Scholar]
  14. Matsunaga T., Hatakeyama Y., Ohta M., Mori T., Nikaido O. Establishment and characterization of a monoclonal antibody recognizing the Dewar isomers of (6-4)photoproducts. Photochem Photobiol. 1993 Jun;57(6):934–940. doi: 10.1111/j.1751-1097.1993.tb02952.x. [DOI] [PubMed] [Google Scholar]
  15. Mitchell D. L. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol. 1988 Jul;48(1):51–57. doi: 10.1111/j.1751-1097.1988.tb02785.x. [DOI] [PubMed] [Google Scholar]
  16. Miura N., Miyamoto I., Asahina H., Satokata I., Tanaka K., Okada Y. Identification and characterization of xpac protein, the gene product of the human XPAC (xeroderma pigmentosum group A complementing) gene. J Biol Chem. 1991 Oct 15;266(29):19786–19789. [PubMed] [Google Scholar]
  17. Mizuno T., Matsunaga T., Ihara M., Nikaido O. Establishment of a monoclonal antibody recognizing cyclobutane-type thymine dimers in DNA: a comparative study with 64M-1 antibody specific for (6-4)photoproducts. Mutat Res. 1991 Mar;254(2):175–184. doi: 10.1016/0921-8777(91)90009-e. [DOI] [PubMed] [Google Scholar]
  18. Mu D., Park C. H., Matsunaga T., Hsu D. S., Reardon J. T., Sancar A. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995 Feb 10;270(6):2415–2418. doi: 10.1074/jbc.270.6.2415. [DOI] [PubMed] [Google Scholar]
  19. Reardon J. T., Nichols A. F., Keeney S., Smith C. A., Taylor J. S., Linn S., Sancar A. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem. 1993 Oct 5;268(28):21301–21308. [PubMed] [Google Scholar]
  20. Robins P., Jones C. J., Biggerstaff M., Lindahl T., Wood R. D. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J. 1991 Dec;10(12):3913–3921. doi: 10.1002/j.1460-2075.1991.tb04961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sancar A. Mechanisms of DNA excision repair. Science. 1994 Dec 23;266(5193):1954–1956. doi: 10.1126/science.7801120. [DOI] [PubMed] [Google Scholar]
  22. Szymkowski D. E., Lawrence C. W., Wood R. D. Repair by human cell extracts of single (6-4) and cyclobutane thymine-thymine photoproducts in DNA. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9823–9827. doi: 10.1073/pnas.90.21.9823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tanaka K., Miura N., Satokata I., Miyamoto I., Yoshida M. C., Satoh Y., Kondo S., Yasui A., Okayama H., Okada Y. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature. 1990 Nov 1;348(6296):73–76. doi: 10.1038/348073a0. [DOI] [PubMed] [Google Scholar]
  24. Todo T., Takemori H., Ryo H., Ihara M., Matsunaga T., Nikaido O., Sato K., Nomura T. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993 Jan 28;361(6410):371–374. doi: 10.1038/361371a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES