Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Apr 1;24(7):1272–1278. doi: 10.1093/nar/24.7.1272

Synthesis, structure and thermodynamic properties of 8-methylguanine-containing oligonucleotides: Z-DNA under physiological salt conditions.

H Sugiyama 1, K Kawai 1, A Matsunaga 1, K Fujimoto 1, I Saito 1, H Robinson 1, A H Wang 1
PMCID: PMC145791  PMID: 8614630

Abstract

Various oligonucleotides containing 8-methylguanine (m8G) have been synthesized and their structures and thermodynamic properties investigated. Introduction Of M8G into DNA sequences markedly stabilizes the Z conformation under low salt conditions. The hexamer d(CGC[M8G]CG)2 exhibits a CD spectrum characteristic of the Z conformation under physiological salt conditions. The NOE-restrained refinement unequivocally demonstrated that d(CGC[m8G]CG)2 adopts a Z structure with all guanines in the syn conformation. The refined NMR structure is very similar to the Z form crystal structure of d(CGCGCG)2, with a root mean square deviation of 0.6 between the two structures. The contribution of m8G to the stabilization of Z-DNA has been estimated from the mid-point NaCl concentrations for the B-Z transition of various m8G-containing oligomers. The presence of m8G in d(CGC[m8G]CG)2 stabilizes the Z conformation by at least deltaG = -0.8 kcal/mol relative to the unmodified hexamer. The Z conformation was further stabilized by increasing the number of m8Gs incorporated and destabilized by incorporating syn-A or syn-T, found respectively in the (A,T)-containing alternating and non-alternating pyrimidine-purine sequences. The results suggest that the chemically less reactive m8G base is a useful agent for studying molecular interactions of Z-DNA or other DNA structures that incorporate syn-G conformation.

Full Text

The Full Text of this article is available as a PDF (136.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton J. K. Metals and DNA: molecular left-handed complements. Science. 1986 Aug 15;233(4765):727–734. doi: 10.1126/science.3016894. [DOI] [PubMed] [Google Scholar]
  2. Behe M., Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619–1623. doi: 10.1073/pnas.78.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dudycz L., Stolarski R., Pless R., Shugar D. A 1H NMR study of the syn-anti dynamic equilibrium in adenine nucleosides and nucleotides with the aid of some synthetic model analogues with fixed conformations. Z Naturforsch C. 1979 May-Jun;34C(5-6):359–373. doi: 10.1515/znc-1979-5-608. [DOI] [PubMed] [Google Scholar]
  4. Feigon J., Wang A. H., van der Marel G. A., Van Boom J. H., Rich A. A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution. Nucleic Acids Res. 1984 Jan 25;12(2):1243–1263. doi: 10.1093/nar/12.2.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feigon J., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Z-DNA forms without an alternating purine-pyrimidine sequence in solution. Science. 1985 Oct 4;230(4721):82–84. doi: 10.1126/science.4035359. [DOI] [PubMed] [Google Scholar]
  6. Herbert A., Lowenhaupt K., Spitzner J., Rich A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7550–7554. doi: 10.1073/pnas.92.16.7550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnston B. H., Rich A. Chemical probes of DNA conformation: detection of Z-DNA at nucleotide resolution. Cell. 1985 Oct;42(3):713–724. doi: 10.1016/0092-8674(85)90268-5. [DOI] [PubMed] [Google Scholar]
  8. Kirshenbaum M. R., Tribolet R., Barton J. K. Rh(DIP)3(3+): a shape-selective metal complex which targets cruciforms. Nucleic Acids Res. 1988 Aug 25;16(16):7943–7960. doi: 10.1093/nar/16.16.7943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kochoyan M., Leroy J. L., Guéron M. Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry. 1990 May 22;29(20):4799–4805. doi: 10.1021/bi00472a008. [DOI] [PubMed] [Google Scholar]
  10. Lafer E. M., Möller A., Nordheim A., Stollar B. D., Rich A. Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3546–3550. doi: 10.1073/pnas.78.6.3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mei H. Y., Barton J. K. Tris(tetramethylphenanthroline)ruthenium(II): a chiral probe that cleaves A-DNA conformations. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1339–1343. doi: 10.1073/pnas.85.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Möller A., Nordheim A., Kozlowski S. A., Patel D. J., Rich A. Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions. Biochemistry. 1984 Jan 3;23(1):54–62. doi: 10.1021/bi00296a009. [DOI] [PubMed] [Google Scholar]
  13. Orbons L. P., van der Marel G. A., van Boom J. H., Altona C. The B and Z forms of the d(m5C-G)3 and d(br5C-G)3 hexamers in solution. A 300-MHz and 500-MHz two-dimensional NMR study. Eur J Biochem. 1986 Oct 1;160(1):131–139. doi: 10.1111/j.1432-1033.1986.tb09949.x. [DOI] [PubMed] [Google Scholar]
  14. Rich A., Nordheim A., Wang A. H. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791–846. doi: 10.1146/annurev.bi.53.070184.004043. [DOI] [PubMed] [Google Scholar]
  15. Rich A. Speculation on the biological roles of left-handed Z-DNA. Ann N Y Acad Sci. 1994 Jul 29;726:1–17. doi: 10.1111/j.1749-6632.1994.tb52792.x. [DOI] [PubMed] [Google Scholar]
  16. Robinson H., Wang A. H. A simple spectral-driven procedure for the refinement of DNA structures by NMR spectroscopy. Biochemistry. 1992 Apr 7;31(13):3524–3533. doi: 10.1021/bi00128a029. [DOI] [PubMed] [Google Scholar]
  17. Sarma R. H., Lee C. H., Evans F. E., Yathindra N., Sundaralingam M. Probing the interrelation between the glycosyl torsion, sugar pucker, and the backbone conformation in C(8) substituted adenine nucleotides by 1H and 1H-(31P) fast Fourier transform nuclear magnetic resonance methods and conformational energy calculations. J Am Chem Soc. 1974 Nov 13;96(23):7337–7348. doi: 10.1021/ja00830a028. [DOI] [PubMed] [Google Scholar]
  18. Son T. D., Guschlbauer W., Guéron M. Flexibility and conformations of guanosine monophosphates by the Overhauser effect. J Am Chem Soc. 1972 Nov 1;94(22):7903–7911. doi: 10.1021/ja00777a038. [DOI] [PubMed] [Google Scholar]
  19. Tran-Dinh S., Taboury J., Neumann J. M., Huynh-Dinh T., Genissel B., Langlois d'Estaintot B., Igolen J. 1H NMR and circular dichroism studies of the B and Z conformations of the self-complementary deoxyhexanucleotide d(m5C-G-C-G-m5-C-G): mechanism of the Z-B-coil transitions. Biochemistry. 1984 Mar 27;23(7):1362–1371. doi: 10.1021/bi00302a005. [DOI] [PubMed] [Google Scholar]
  20. Van Lier J. J., Smits M. T., Buck H. M. B-Z transition in methylated DNA. A quantum-chemical study. Eur J Biochem. 1983 Apr 15;132(1):55–62. doi: 10.1111/j.1432-1033.1983.tb07324.x. [DOI] [PubMed] [Google Scholar]
  21. Votavová H., Mátlová R., Sponar J. B-Z transition of synthetic oligonucleotides containing non-Z forming elements. J Biomol Struct Dyn. 1994 Aug;12(1):163–172. doi: 10.1080/07391102.1994.10508094. [DOI] [PubMed] [Google Scholar]
  22. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
  23. Xodo L. E., Manzini G., Quadrifoglio F., van der Marel G. A., van Boom J. H. The B-Z conformational transition in folded oligodeoxynucleotides: loop size and stability of Z-hairpins. Biochemistry. 1988 Aug 23;27(17):6327–6331. doi: 10.1021/bi00417a019. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES