Skip to main content
Immunology logoLink to Immunology
. 1979 Oct;38(2):429–435.

Hydrocortisone and the antibody response in mice. I. Correlations between serum cortisol levels and cell numbers in thymus, spleen, marrow and lymph nodes.

B N Dracott, C E Smith
PMCID: PMC1457917  PMID: 511224

Abstract

Mice injected with a single well tolerated dose of hydrocortisone acetate were observed over 2--3 weeks for serum cortisol levels and for cell depletion in thymus, spleen, femoral marrow, mesenteric, inguinal and popliteal lymph nodes. Serum cortisol peaked within 24 h and declined to normal after 4 days. Total marrow cell numbers were relatively unaffected, but in all other tissues studied, cell depletion was severe and prolonged. B lymphocytes were affected more severely than T lymphocytes. There was a transient increase in the percentage of marrow T lymphocytes but otherwise little change. The percentage of node T lymphocytes increased while that of B lymphocytes decreased. The percentage of spleen B lymphocytes was reduced severely but transiently during the period of serum cortisol elevation. Spleen T lymphocyte percentages rose steadily between the fourth and seventh days after treatment, then returned to normal. Representatives of most types of lymphoid tissue were studied. As cell losses in any one were not compensated by gains in any other, most were probably due to destruction rather than redistribution. The slow rates of recovery were also more consistent with regeneration than with reappearance after redistribution.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balow J. E., Rosenthal A. S. Glucocorticoid suppression of macrophage migration inhibitory factor. J Exp Med. 1973 Apr 1;137(4):1031–1041. doi: 10.1084/jem.137.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blomgren H., Andersson B. Evidence for a small pool of immunocompetent cells in the mouse thymus. Exp Cell Res. 1969 Oct;57(2):185–192. doi: 10.1016/0014-4827(69)90140-2. [DOI] [PubMed] [Google Scholar]
  3. Celada F., Rotman B. A fluorochromatic test for immunocytotoxicity against tumor cells and leucocytes in agarose plates. Proc Natl Acad Sci U S A. 1967 Mar;57(3):630–636. doi: 10.1073/pnas.57.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chervenick P. A., Boggs D. R., Marsh J. C., Cartwright G. E., Wintrobe M. M. Quantitative studies of blood and bone marrow neutrophils in normal mice. Am J Physiol. 1968 Aug;215(2):353–360. doi: 10.1152/ajplegacy.1968.215.2.353. [DOI] [PubMed] [Google Scholar]
  5. Claman H. N. Corticosteroids and lymphoid cells. N Engl J Med. 1972 Aug 24;287(8):388–397. doi: 10.1056/NEJM197208242870806. [DOI] [PubMed] [Google Scholar]
  6. Cohen J. J., Claman H. N. Thymus-marrow immunocompetence. V. Hydrocortisone-resistant cells and processes in the hemolytic antibody response of mice. J Exp Med. 1971 May 1;133(5):1026–1034. doi: 10.1084/jem.133.5.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen J. J., Fschbach M., Claman H. N. Hydrocortisne resistance of graft vs host activity in mouse thymus, spleen and bone marrow. J Immunol. 1970 Nov;105(5):1146–1150. [PubMed] [Google Scholar]
  8. DOUGHERTY T. F. Effect of hormones on lympatic tissue. Physiol Rev. 1952 Oct;32(4):379–401. doi: 10.1152/physrev.1952.32.4.379. [DOI] [PubMed] [Google Scholar]
  9. Doenhoff M. J., Leuchars E. Effects of irradiation, anti-thymocyte serum and corticosteroids on PHA and LPS responsive cells of the mouse. Int Arch Allergy Appl Immunol. 1977;53(6):505–514. doi: 10.1159/000231792. [DOI] [PubMed] [Google Scholar]
  10. Dracott B. N., Smith C. E. Hydrocortisone and the antibody response in mice. II. Correlations between serum and antibody and PFC in thymus, spleen, marrow and lymph nodes. Immunology. 1979 Oct;38(2):437–443. [PMC free article] [PubMed] [Google Scholar]
  11. Droege W., Zucker R., Jauker U. Cellular composition of the mouse thymus: developmental changes and the effect of hydrocortisone. Cell Immunol. 1974 May;12(2):173–185. doi: 10.1016/0008-8749(74)90070-7. [DOI] [PubMed] [Google Scholar]
  12. Dumont F., Barrois R. Electrokinetic properties and mitogen responsiveness of mouse splenic B and T lymphocytes following hydrocortisone treatment. Int Arch Allergy Appl Immunol. 1977;53(4):293–302. doi: 10.1159/000231765. [DOI] [PubMed] [Google Scholar]
  13. Elliott E. V., Sinclair N. R. Effect of cortisone acetate on 19S and 7S haemolysin antibody. A time course study. Immunology. 1968 Nov;15(5):643–652. [PMC free article] [PubMed] [Google Scholar]
  14. Fauci A. S. Corticosteroids and circulating lymphocytes. Transplant Proc. 1975 Mar;7(1):37–40. [PubMed] [Google Scholar]
  15. Fauci A. S. Mechanisms of corticosteroid action on lymphocyte subpopulations. I. Redistribution of circulating T and b lymphocytes to the bone marrow. Immunology. 1975 Apr;28(4):669–680. [PMC free article] [PubMed] [Google Scholar]
  16. Ferreira A., Moreno C., Hoecker G. Lack of correlation between the effects of cortisone on mouse spleen plaque-forming cells and circulating anti-sheep red blood cell haemolysins. Immunology. 1973 Apr;24(4):607–616. [PMC free article] [PubMed] [Google Scholar]
  17. Golub E. S. Brain-associated theta antigen: reactivity of rabbit anti-mouse brain with mouse lymphoid cells. Cell Immunol. 1971 Aug;2(4):353–361. doi: 10.1016/0008-8749(71)90070-0. [DOI] [PubMed] [Google Scholar]
  18. Haynes B. F., Fauci A. S. The differential effect of in vivo hydrocortisone on the kinetics of subpopulations of human peripheral blood thymus-derived lymphocytes. J Clin Invest. 1978 Mar;61(3):703–707. doi: 10.1172/JCI108982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ISHIDATE M., METCALF D. THE PATTERN OF LYMPHOPOIESIS IN THE MOUSE THYMUS AFTER CORTISONE ADMINISTRATION OR ADRENALECTOMY. Aust J Exp Biol Med Sci. 1963 Dec;41:637–649. doi: 10.1038/icb.1963.53. [DOI] [PubMed] [Google Scholar]
  20. Levine M. A., Claman H. N. Bone marrow and spleen: dissociation of immunologic properties by cortisone. Science. 1970 Mar 13;167(3924):1515–1517. doi: 10.1126/science.167.3924.1515. [DOI] [PubMed] [Google Scholar]
  21. QUITTNER H., WALD N., SUSSMAN L. N., ANTOPOL W. The effect of massive doses of cortisone on the peripheral blood and bone marrow of the mouse. Blood. 1951 Jun;6(6):513–521. [PubMed] [Google Scholar]
  22. ROSENAU W., MOON H. D. The inhibitory effect of hydrocortisone on lysis of homologous cells by lymphocytes in vitro. J Immunol. 1962 Sep;89:422–426. [PubMed] [Google Scholar]
  23. Rinehart J. J., Sagone A. L., Balcerzak S. P., Ackerman G. A., LoBuglio A. F. Effects of corticosteroid therapy on human monocyte function. N Engl J Med. 1975 Jan 30;292(5):236–241. doi: 10.1056/NEJM197501302920504. [DOI] [PubMed] [Google Scholar]
  24. Vischer T. L. Effect of hydrocortisone on the reactivity of thymus and spleen cells of mice to in vitro stimulation. Immunology. 1972 Nov;23(5):777–784. [PMC free article] [PubMed] [Google Scholar]
  25. Wahl S. M., Altman L. C., Rosenstreich D. L. Inhibition of in vitro lymphokine synthesis by glucocorticosteroids. J Immunol. 1975 Aug;115(2):476–481. [PubMed] [Google Scholar]
  26. Ward P. A. The chemosuppression of chemotaxis. J Exp Med. 1966 Aug 1;124(2):209–226. doi: 10.1084/jem.124.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weissman I. L. Thymus cell maturation. Studies on the origin of cortisone-resistant thymic lymphocytes. J Exp Med. 1973 Feb 1;137(2):504–510. doi: 10.1084/jem.137.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weston W. L., Claman H. N., Krueger G. G. Site of action of cortisol in cellular immunity. J Immunol. 1973 Mar;110(3):880–883. [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES