Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Apr 15;24(8):1465–1471. doi: 10.1093/nar/24.8.1465

Age-dependent silencing of globin transgenes in the mouse.

G Robertson 1, D Garrick 1, M Wilson 1, D I Martin 1, E Whitelaw 1
PMCID: PMC145804  PMID: 8628679

Abstract

Variegation of transgene expression, a heterocellular or mosaic pattern of expression seen in all mice in a given transgenic line, is a frequently observed but unexplained phenomenon. We have encountered variegation with globin transgenes; when lacZ expression is driven by globin control elements a proportion of erythrocytes express beta-galactosidase (beta-gal), while the remaining erythrocytes express none. The percentage of expressing cells is constant within each line (at any particular developmental stage), but varies between lines. Such variation may account for much of the line-to-line variability which has been reported in the expression of a transgene construct. We have now extended these observations by studying expression of several globin/lacZ transgenes with increasing age. Expression of beta-gal is variegated in all lines in adult mice, including those made with a beta-globin promoter and locus control region driving lacZ. The extent of variegation differs widely between lines, but in all lines there is a marked decline in the number of erythrocytes expressing beta-gal with increasing age. Progression of silencing continues long past the point at which globin switching is complete, suggesting that it is not related to this process. We observe that age-dependent silencing is most severe in high copy number animals. Increasing variegation of transgene expression with ageing of mice is likely to complicate interpretation of the developmental regulation of transgenes. We speculate that it reflects a general mechanism of epigenetic regulation.

Full Text

The Full Text of this article is available as a PDF (121.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradl M., Larue L., Mintz B. Clonal coat color variation due to a transforming gene expressed in melanocytes of transgenic mice. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6447–6451. doi: 10.1073/pnas.88.15.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buratowski S. The basics of basal transcription by RNA polymerase II. Cell. 1994 Apr 8;77(1):1–3. doi: 10.1016/0092-8674(94)90226-7. [DOI] [PubMed] [Google Scholar]
  3. Cattanach B. M. Position effect variegation in the mouse. Genet Res. 1974 Jun;23(3):291–306. doi: 10.1017/s0016672300014932. [DOI] [PubMed] [Google Scholar]
  4. Davies R. L., Fuhrer-Krusi S., Kucherlapati R. S. Modulation of transfected gene expression mediated by changes in chromatin structure. Cell. 1982 Dec;31(3 Pt 2):521–529. doi: 10.1016/0092-8674(82)90308-7. [DOI] [PubMed] [Google Scholar]
  5. Davis B. P., MacDonald R. J. Limited transcription of rat elastase I transgene repeats in transgenic mice. Genes Dev. 1988 Jan;2(1):13–22. doi: 10.1101/gad.2.1.13. [DOI] [PubMed] [Google Scholar]
  6. Elliott J. I., Festenstein R., Tolaini M., Kioussis D. Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J. 1995 Feb 1;14(3):575–584. doi: 10.1002/j.1460-2075.1995.tb07033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enver T., Li Q., Gale K. B., Hu M., May G. E., Karlinsey J. E., Jimenez G., Papayannopoulou T., Costantini F. Analysis of the developmental and transcriptional potentiation functions of 5'HS2 of the murine beta-globin locus control region in transgenic mice. Dev Biol. 1994 Oct;165(2):574–584. doi: 10.1006/dbio.1994.1277. [DOI] [PubMed] [Google Scholar]
  8. Fiering S. N., Roederer M., Nolan G. P., Micklem D. R., Parks D. R., Herzenberg L. A. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry. 1991;12(4):291–301. doi: 10.1002/cyto.990120402. [DOI] [PubMed] [Google Scholar]
  9. Flavell R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3490–3496. doi: 10.1073/pnas.91.9.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forrester W. C., Takegawa S., Papayannopoulou T., Stamatoyannopoulos G., Groudine M. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 1987 Dec 23;15(24):10159–10177. doi: 10.1093/nar/15.24.10159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gourdon G., Sharpe J. A., Wells D., Wood W. G., Higgs D. R. Analysis of a 70 kb segment of DNA containing the human zeta and alpha-globin genes linked to their regulatory element (HS-40) in transgenic mice. Nucleic Acids Res. 1994 Oct 11;22(20):4139–4147. doi: 10.1093/nar/22.20.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grosveld F., van Assendelft G. B., Greaves D. R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8. [DOI] [PubMed] [Google Scholar]
  13. Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
  14. Henikoff S. Position effect and related phenomena. Curr Opin Genet Dev. 1992 Dec;2(6):907–912. doi: 10.1016/s0959-437x(05)80114-5. [DOI] [PubMed] [Google Scholar]
  15. Higgs D. R., Wood W. G., Jarman A. P., Sharpe J., Lida J., Pretorius I. M., Ayyub H. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev. 1990 Sep;4(9):1588–1601. doi: 10.1101/gad.4.9.1588. [DOI] [PubMed] [Google Scholar]
  16. Jarman A. P., Wood W. G., Sharpe J. A., Gourdon G., Ayyub H., Higgs D. R. Characterization of the major regulatory element upstream of the human alpha-globin gene cluster. Mol Cell Biol. 1991 Sep;11(9):4679–4689. doi: 10.1128/mcb.11.9.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katsuki M., Sato M., Kimura M., Yokoyama M., Kobayashi K., Nomura T. Conversion of normal behavior to shiverer by myelin basic protein antisense cDNA in transgenic mice. Science. 1988 Jul 29;241(4865):593–595. doi: 10.1126/science.2456614. [DOI] [PubMed] [Google Scholar]
  18. Linn F., Heidmann I., Saedler H., Meyer P. Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet. 1990 Jul;222(2-3):329–336. doi: 10.1007/BF00633837. [DOI] [PubMed] [Google Scholar]
  19. Mintz B., Bradl M. Mosaic expression of a tyrosinase fusion gene in albino mice yields a heritable striped coat color pattern in transgenic homozygotes. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9643–9647. doi: 10.1073/pnas.88.21.9643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morley B. J., Abbott C. A., Sharpe J. A., Lida J., Chan-Thomas P. S., Wood W. G. A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice. Mol Cell Biol. 1992 May;12(5):2057–2066. doi: 10.1128/mcb.12.5.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nolan G. P., Fiering S., Nicolas J. F., Herzenberg L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2603–2607. doi: 10.1073/pnas.85.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pondel M. D., Proudfoot N. J., Whitelaw C., Whitelaw E. The developmental regulation of the human zeta-globin gene in transgenic mice employing beta-galactosidase as a reporter gene. Nucleic Acids Res. 1992 Nov 11;20(21):5655–5660. doi: 10.1093/nar/20.21.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pravtcheva D. D., Wise T. L., Ensor N. J., Ruddle F. H. Mosaic expression of an Hprt transgene integrated in a region of Y heterochromatin. J Exp Zool. 1994 May 1;268(6):452–468. doi: 10.1002/jez.1402680606. [DOI] [PubMed] [Google Scholar]
  24. Robertson G., Garrick D., Wu W., Kearns M., Martin D., Whitelaw E. Position-dependent variegation of globin transgene expression in mice. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5371–5375. doi: 10.1073/pnas.92.12.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sabl J. F., Henikoff S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics. 1996 Feb;142(2):447–458. doi: 10.1093/genetics/142.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sharpe J. A., Chan-Thomas P. S., Lida J., Ayyub H., Wood W. G., Higgs D. R. Analysis of the human alpha globin upstream regulatory element (HS-40) in transgenic mice. EMBO J. 1992 Dec;11(12):4565–4572. doi: 10.1002/j.1460-2075.1992.tb05558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharpe J. A., Wells D. J., Whitelaw E., Vyas P., Higgs D. R., Wood W. G. Analysis of the human alpha-globin gene cluster in transgenic mice. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11262–11266. doi: 10.1073/pnas.90.23.11262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stamatoyannopoulos G., Josephson B., Zhang J. W., Li Q. Developmental regulation of human gamma-globin genes in transgenic mice. Mol Cell Biol. 1993 Dec;13(12):7636–7644. doi: 10.1128/mcb.13.12.7636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Strouboulis J., Dillon N., Grosveld F. Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev. 1992 Oct;6(10):1857–1864. doi: 10.1101/gad.6.10.1857. [DOI] [PubMed] [Google Scholar]
  30. Tartof K. D. Position effect variegation in yeast. Bioessays. 1994 Oct;16(10):713–714. doi: 10.1002/bies.950161004. [DOI] [PubMed] [Google Scholar]
  31. Tuan D. Y., Solomon W. B., London I. M., Lee D. P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like globin" genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554–2558. doi: 10.1073/pnas.86.8.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walters M. C., Fiering S., Eidemiller J., Magis W., Groudine M., Martin D. I. Enhancers increase the probability but not the level of gene expression. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7125–7129. doi: 10.1073/pnas.92.15.7125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Walters M. C., Magis W., Fiering S., Eidemiller J., Scalzo D., Groudine M., Martin D. I. Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 1996 Jan 15;10(2):185–195. doi: 10.1101/gad.10.2.185. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES