Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Apr 15;24(8):1525–1530. doi: 10.1093/nar/24.8.1525

An element in the endogenous IgH locus stimulates gene targeting in hybridoma cells.

A Buzina 1, M J Shulman 1
PMCID: PMC145805  PMID: 8628687

Abstract

Gene targeting of the immunoglobulin (Ig) heavy chain locus is the basis of improved methods of investigating gene expression and of antibody engineering. The VH-Cmu intron is a convenient region for mediating homologous recombination events which result in production of Ig bearing an altered heavy chain. Also, this segment includes several elements which are important for gene expression, replication and isotype switching: in some cases it will be advantageous to alter these processes by modifying this intron. Considering that multiple targeting steps might be needed to accomplish all the requisite changes, it is important to know whether any of the anticipated modifications also alter the recombinogenicity of the IgH locus. To test this possibility we have measured the frequency at which a mutation in the Cmu3 exon of the endogenous mu gene is corrected by homologous recombination with a transfected segment of Cmu DNA. Comparison of recombination frequencies in several engineered hybridomas indicates that deletion of a 7.1 kb segment from the VH-Cmu intron depresses recombination by approximately 10-fold.

Full Text

The Full Text of this article is available as a PDF (82.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera R. J., Hope T. J., Sakano H. Characterization of immunoglobulin enhancer deletions in murine plasmacytomas. EMBO J. 1985 Dec 30;4(13B):3689–3693. doi: 10.1002/j.1460-2075.1985.tb04136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ariizumi K., Wang Z., Tucker P. W. Immunoglobulin heavy chain enhancer is located near or in an initiation zone of chromosomal DNA replication. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3695–3699. doi: 10.1073/pnas.90.8.3695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baar J., Shulman M. J. The Ig heavy chain switch region is a hotspot for insertion of transfected DNA. J Immunol. 1995 Aug 15;155(4):1911–1920. [PubMed] [Google Scholar]
  4. Baker M. D., Pennell N., Bosnoyan L., Shulman M. J. Homologous recombination can restore normal immunoglobulin production in a mutant hybridoma cell line. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6432–6436. doi: 10.1073/pnas.85.17.6432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baumann B., Potash M. J., Köhler G. Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J. 1985 Feb;4(2):351–359. doi: 10.1002/j.1460-2075.1985.tb03636.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bautista D., Shulman M. J. A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination. J Immunol. 1993 Aug 15;151(4):1950–1958. [PubMed] [Google Scholar]
  7. Connor A., Collins C., Jiang L., McMaster M., Shulman M. J. Isolation of new nonsense and frameshift mutants in the immunoglobulin mu heavy-chain gene of hybridoma cells. Somat Cell Mol Genet. 1993 Jul;19(4):313–320. doi: 10.1007/BF01232744. [DOI] [PubMed] [Google Scholar]
  8. Cosloy S. D. Effect of transcription on RecBC- and RecF-mediated recombination within the tryptophan operon of Escherichia coli K-12. J Bacteriol. 1979 Sep;139(3):1079–1081. doi: 10.1128/jb.139.3.1079-1081.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daniels G. A., Lieber M. R. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5625–5629. doi: 10.1073/pnas.92.12.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forrester W. C., van Genderen C., Jenuwein T., Grosschedl R. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science. 1994 Aug 26;265(5176):1221–1225. doi: 10.1126/science.8066460. [DOI] [PubMed] [Google Scholar]
  11. Gangloff S., Lieber M. R., Rothstein R. Transcription, topoisomerases and recombination. Experientia. 1994 Mar 15;50(3):261–269. doi: 10.1007/BF01924009. [DOI] [PubMed] [Google Scholar]
  12. Gram H., Zenke G., Geisse S., Kleuser B., Bürki K. High-level expression of a human immunoglobulin gamma 1 transgene depends on switch region sequences. Eur J Immunol. 1992 May;22(5):1185–1191. doi: 10.1002/eji.1830220512. [DOI] [PubMed] [Google Scholar]
  13. Gross-Bellard M., Oudet P., Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem. 1973 Jul 2;36(1):32–38. doi: 10.1111/j.1432-1033.1973.tb02881.x. [DOI] [PubMed] [Google Scholar]
  14. Harriman W., Völk H., Defranoux N., Wabl M. Immunoglobulin class switch recombination. Annu Rev Immunol. 1993;11:361–384. doi: 10.1146/annurev.iy.11.040193.002045. [DOI] [PubMed] [Google Scholar]
  15. Klein S., Sablitzky F., Radbruch A. Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant. EMBO J. 1984 Nov;3(11):2473–2476. doi: 10.1002/j.1460-2075.1984.tb02158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lennon G. G., Perry R. P. C mu-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5'-nontranslatable exon. Nature. 1985 Dec 5;318(6045):475–478. doi: 10.1038/318475a0. [DOI] [PubMed] [Google Scholar]
  17. Mulligan R. C., Berg P. Expression of a bacterial gene in mammalian cells. Science. 1980 Sep 19;209(4463):1422–1427. doi: 10.1126/science.6251549. [DOI] [PubMed] [Google Scholar]
  18. Myers R. S., Stahl F. W. Chi and the RecBC D enzyme of Escherichia coli. Annu Rev Genet. 1994;28:49–70. doi: 10.1146/annurev.ge.28.120194.000405. [DOI] [PubMed] [Google Scholar]
  19. Nelsen B., Sen R. Regulation of immunoglobulin gene transcription. Int Rev Cytol. 1992;133:121–149. doi: 10.1016/s0074-7696(08)61859-8. [DOI] [PubMed] [Google Scholar]
  20. Nickoloff J. A. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol. 1992 Dec;12(12):5311–5318. doi: 10.1128/mcb.12.12.5311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oancea A. E., Shulman M. J. An improved system of somatic cell molecular genetics for analyzing the requirements of Ig synthesis and function. Int Immunol. 1994 Aug;6(8):1161–1168. doi: 10.1093/intimm/6.8.1161. [DOI] [PubMed] [Google Scholar]
  22. Oancea A. E., Tsui F. W., Shulman M. J. Targeted removal of the mu switch region from mouse hybridoma cells. A test of its role in gene expression in the endogenous IgH locus. J Immunol. 1995 Dec 15;155(12):5678–5683. [PubMed] [Google Scholar]
  23. Ott D. E., Marcu K. B. Molecular requirements for immunoglobulin heavy chain constant region gene switch-recombination revealed with switch-substrate retroviruses. Int Immunol. 1989;1(6):582–591. doi: 10.1093/intimm/1.6.582. [DOI] [PubMed] [Google Scholar]
  24. Schär P., Kohli J. Preferential strand transfer and hybrid DNA formation at the recombination hotspot ade6-M26 of Schizosaccharomyces pombe. EMBO J. 1994 Nov 1;13(21):5212–5219. doi: 10.1002/j.1460-2075.1994.tb06852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shulman M. J., Heusser C., Filkin C., Köhler G. Mutations affecting the structure and function of immunoglobulin M. Mol Cell Biol. 1982 Sep;2(9):1033–1043. doi: 10.1128/mcb.2.9.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shulman M. J., Nissen L., Collins C. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol Cell Biol. 1990 Sep;10(9):4466–4472. doi: 10.1128/mcb.10.9.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sigurdardottir D., Sohn J., Kass J., Selsing E. Regulatory regions 3' of the immunoglobulin heavy chain intronic enhancer differentially affect expression of a heavy chain transgene in resting and activated B cells. J Immunol. 1995 Mar 1;154(5):2217–2225. [PubMed] [Google Scholar]
  28. Smith G. R. Hotspots of homologous recombination. Experientia. 1994 Mar 15;50(3):234–241. doi: 10.1007/BF01924006. [DOI] [PubMed] [Google Scholar]
  29. Thyagarajan B., Johnson B. L., Campbell C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res. 1995 Jul 25;23(14):2784–2790. doi: 10.1093/nar/23.14.2784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wabl M. R., Burrows P. D. Expression of immunoglobulin heavy chain at a high level in the absence of a proposed immunoglobulin enhancer element in cis. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2452–2455. doi: 10.1073/pnas.81.8.2452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wahls W. P., Smith G. R. A heteromeric protein that binds to a meiotic homologous recombination hot spot: correlation of binding and hot spot activity. Genes Dev. 1994 Jul 15;8(14):1693–1702. doi: 10.1101/gad.8.14.1693. [DOI] [PubMed] [Google Scholar]
  32. Zaller D. M., Eckhardt L. A. Deletion of a B-cell-specific enhancer affects transfected, but not endogenous, immunoglobulin heavy-chain gene expression. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5088–5092. doi: 10.1073/pnas.82.15.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zou Y. R., Müller W., Gu H., Rajewsky K. Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol. 1994 Dec 1;4(12):1099–1103. doi: 10.1016/s0960-9822(00)00248-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES