Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Apr 15;24(8):1481–1488. doi: 10.1093/nar/24.8.1481

The gamma subfamily of DNA polymerases: cloning of a developmentally regulated cDNA encoding Xenopus laevis mitochondrial DNA polymerase gamma.

F Ye 1, J A Carrodeguas 1, D F Bogenhagen 1
PMCID: PMC145809  PMID: 8628681

Abstract

We used the known sequence of the Saccharomyces cerevisiae DNA polymerase gamma to clone the genes or cDNAs encoding this enzyme in two other yeasts, Pychia pastoris and Schizosaccharomyces pombe, and one higher eukaryote, Xenopus laevis. To confirm the identity of the final X.laevis clone, two antisera raised against peptide sequences were shown to react with DNA polymerase gamma purified from X.laevis oocyte mitochondria. A developmentally regulated 4.6 kb mRNA is recognized on Northern blots of oocyte RNA using the X.laevis cDNA. Comparison of the four DNA polymerase gamma gene sequences revealed several highly conserved sequence blocks, comprising an N-terminal 3'-->5'exonuclease domain and a C-terminal polymerase active center interspersed with gamma-specific gene sequences. The consensus sequences for the DNA polymerase gamma exonuclease and polymerase domains show extensive sequence similarity to DNA polymerase I from Escherichia coli. Sequence conservation is greatest for residues located near the active centers of the exo and pol domains of the E.coli DNA polymerase I structure. The domain separating the exonuclease and polymerase active sites is larger in DNA polymerase gamma than in other members of family A (DNA polymerase I-like) polymerases. The S.cerevisiae DNA polymerase gamma is atypical in that it includes a 240 residue C-terminal extension that is not found in the other members of the DNA polymerase gamma family, or in other family A DNA polymerases.

Full Text

The Full Text of this article is available as a PDF (176.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beese L. S., Derbyshire V., Steitz T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16;260(5106):352–355. doi: 10.1126/science.8469987. [DOI] [PubMed] [Google Scholar]
  2. Beese L. S., Friedman J. M., Steitz T. A. Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry. 1993 Dec 28;32(51):14095–14101. doi: 10.1021/bi00214a004. [DOI] [PubMed] [Google Scholar]
  3. Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco L., Bernad A., Salas M. MIP1 DNA polymerase of S. cerevisiae: structural similarity with the E. coli DNA polymerase I-type enzymes. Nucleic Acids Res. 1991 Feb 25;19(4):955–955. doi: 10.1093/nar/19.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chase J. W., Dawid I. B. Biogenesis of mitochondria during Xenopus laevis development. Dev Biol. 1972 Apr;27(4):504–518. doi: 10.1016/0012-1606(72)90189-3. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Derbyshire V., Grindley N. D., Joyce C. M. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J. 1991 Jan;10(1):17–24. doi: 10.1002/j.1460-2075.1991.tb07916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Foury F. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem. 1989 Dec 5;264(34):20552–20560. [PubMed] [Google Scholar]
  11. Foury F., Vanderstraeten S. Yeast mitochondrial DNA mutators with deficient proofreading exonucleolytic activity. EMBO J. 1992 Jul;11(7):2717–2726. doi: 10.1002/j.1460-2075.1992.tb05337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freemont P. S., Friedman J. M., Beese L. S., Sanderson M. R., Steitz T. A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8924–8928. doi: 10.1073/pnas.85.23.8924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frohman M. A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 1993;218:340–356. doi: 10.1016/0076-6879(93)18026-9. [DOI] [PubMed] [Google Scholar]
  14. Gray H., Wong T. W. Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem. 1992 Mar 25;267(9):5835–5841. [PubMed] [Google Scholar]
  15. Insdorf N. F., Bogenhagen D. F. DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure. J Biol Chem. 1989 Dec 25;264(36):21491–21497. [PubMed] [Google Scholar]
  16. Insdorf N. F., Bogenhagen D. F. DNA polymerase gamma from Xenopus laevis. II. A 3'----5' exonuclease is tightly associated with the DNA polymerase activity. J Biol Chem. 1989 Dec 25;264(36):21498–21503. [PubMed] [Google Scholar]
  17. Ito J., Braithwaite D. K. Yeast mitochondrial DNA polymerase is related to the family A DNA polymerases. Nucleic Acids Res. 1990 Nov 25;18(22):6716–6716. doi: 10.1093/nar/18.22.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. doi: 10.1146/annurev.bi.63.070194.004021. [DOI] [PubMed] [Google Scholar]
  19. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  20. Kunkel T. A., Soni A. Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-gamma. J Biol Chem. 1988 Mar 25;263(9):4450–4459. [PubMed] [Google Scholar]
  21. Longley M. J., Mosbaugh D. W. Properties of the 3' to 5' exonuclease associated with porcine liver DNA polymerase gamma. Substrate specificity, product analysis, inhibition, and kinetics of terminal excision. J Biol Chem. 1991 Dec 25;266(36):24702–24711. [PubMed] [Google Scholar]
  22. Moreno S., Klar A., Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823. doi: 10.1016/0076-6879(91)94059-l. [DOI] [PubMed] [Google Scholar]
  23. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
  24. Olson M. W., Kaguni L. S. 3'-->5' exonuclease in Drosophila mitochondrial DNA polymerase. Substrate specificity and functional coordination of nucleotide polymerization and mispair hydrolysis. J Biol Chem. 1992 Nov 15;267(32):23136–23142. [PubMed] [Google Scholar]
  25. Pinz K. G., Shibutani S., Bogenhagen D. F. Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J Biol Chem. 1995 Apr 21;270(16):9202–9206. doi: 10.1074/jbc.270.16.9202. [DOI] [PubMed] [Google Scholar]
  26. Rave N., Crkvenjakov R., Boedtker H. Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels. Nucleic Acids Res. 1979 Aug 10;6(11):3559–3567. doi: 10.1093/nar/6.11.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ropp P. A., Copeland W. C. Characterization of a new DNA polymerase from Schizosaccharomyces pombe: a probable homologue of the Saccharomyces cerevisiae DNA polymerase gamma. Gene. 1995 Nov 7;165(1):103–107. doi: 10.1016/0378-1119(95)00412-y. [DOI] [PubMed] [Google Scholar]
  28. Webb A. C., Smith L. D. Accumulation of mitochondrial DNA during oogenesis in Xenopus laevis. Dev Biol. 1977 Mar;56(1):219–225. doi: 10.1016/0012-1606(77)90166-x. [DOI] [PubMed] [Google Scholar]
  29. Wernette C. M., Kaguni L. S. A mitochondrial DNA polymerase from embryos of Drosophila melanogaster. Purification, subunit structure, and partial characterization. J Biol Chem. 1986 Nov 5;261(31):14764–14770. [PubMed] [Google Scholar]
  30. Williams A. J., Wernette C. M., Kaguni L. S. Processivity of mitochondrial DNA polymerase from Drosophila embryos. Effects of reaction conditions and enzyme purity. J Biol Chem. 1993 Nov 25;268(33):24855–24862. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES