Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Apr 15;24(8):1566–1573. doi: 10.1093/nar/24.8.1566

An NMR study of [d(CGCGAATTCGCG)]2 containing an interstrand cross-link derived from a distamycin-pyrrole conjugate.

P A Fagan 1, H P Spielmann 1, S Sigurdsson 1, S M Rink 1, P B Hopkins 1, D E Wemmer 1
PMCID: PMC145811  PMID: 8628693

Abstract

Minor groove binding compounds related to distamycin A bind DNA with high sequence selectivity, recognizing sites which contain various combinations of A.T and G.C base pairs. These molecules have the potential to deliver cross-linking agents to the minor groove of a target DNA sequence. We have studied the covalent DNA-DNA cross-linked complex of 2,3- bis(hydroxymethyl)pyrrole-distamycin and [d(CGCGAATTCGCG)]2. The alkylating pyrrole design is based on the pharmacophore of mitomycin C and is similar in substructure to another important class of natural products, the oxidatively activated pyrrolizidine alkaloids. Ligand-DNA NOEs confirm that the tri(pyrrole-carboxamide) unit of the ligand is bound in the minor groove of the central A+T tract. Unexpectedly, it is shifted by 1 bp with respect to the distamycin A binding site on this DNA sequence. The cross-link bridges the 2-amino position of two guanine residues, G4 and G22. The C3.G22 and G4.C21 base pairs exhibit Watson-Crick base pairing, with some local distortion, as evidenced by unusual intensities observed for DNA-DNA NOE cross-peaks. The model is compared with a related structure of a cross-linked mitomycin C:DNA complex.

Full Text

The Full Text of this article is available as a PDF (104.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borowy-Borowski H., Lipman R., Tomasz M. Recognition between mitomycin C and specific DNA sequences for cross-link formation. Biochemistry. 1990 Mar 27;29(12):2999–3006. doi: 10.1021/bi00464a016. [DOI] [PubMed] [Google Scholar]
  2. Breslauer K. J., Remeta D. P., Chou W. Y., Ferrante R., Curry J., Zaunczkowski D., Snyder J. G., Marky L. A. Enthalpy-entropy compensations in drug-DNA binding studies. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8922–8926. doi: 10.1073/pnas.84.24.8922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Broggini M., Erba E., Ponti M., Ballinari D., Geroni C., Spreafico F., D'Incalci M. Selective DNA interaction of the novel distamycin derivative FCE 24517. Cancer Res. 1991 Jan 1;51(1):199–204. [PubMed] [Google Scholar]
  4. Chen F. X., Zhang Y., Church K. M., Bodell W. J., Gold B. DNA crosslinking, sister chromatid exchange and cytotoxicity of N-2-chloroethylnitrosoureas tethered to minor groove binding peptides. Carcinogenesis. 1993 May;14(5):935–940. doi: 10.1093/carcin/14.5.935. [DOI] [PubMed] [Google Scholar]
  5. Church K. M., Wurdeman R. L., Zhang Y., Chen F. X., Gold B. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA. Biochemistry. 1990 Jul 24;29(29):6827–6838. doi: 10.1021/bi00481a011. [DOI] [PubMed] [Google Scholar]
  6. Coll M., Aymami J., van der Marel G. A., van Boom J. H., Rich A., Wang A. H. Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochemistry. 1989 Jan 10;28(1):310–320. doi: 10.1021/bi00427a042. [DOI] [PubMed] [Google Scholar]
  7. Dabrowiak J. C., Goodisman J., Kissinger K. Thermodynamic data from drug-DNA footprinting experiments. Biochemistry. 1990 Jul 3;29(26):6139–6145. doi: 10.1021/bi00478a005. [DOI] [PubMed] [Google Scholar]
  8. Dervan P. B. Design of sequence-specific DNA-binding molecules. Science. 1986 Apr 25;232(4749):464–471. doi: 10.1126/science.2421408. [DOI] [PubMed] [Google Scholar]
  9. Geierstanger B. H., Mrksich M., Dervan P. B., Wemmer D. E. Design of a G.C-specific DNA minor groove-binding peptide. Science. 1994 Oct 28;266(5185):646–650. doi: 10.1126/science.7939719. [DOI] [PubMed] [Google Scholar]
  10. Hare D. R., Wemmer D. E., Chou S. H., Drobny G., Reid B. R. Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods. J Mol Biol. 1983 Dec 15;171(3):319–336. doi: 10.1016/0022-2836(83)90096-7. [DOI] [PubMed] [Google Scholar]
  11. Heinemann U., Alings C. Crystallographic study of one turn of G/C-rich B-DNA. J Mol Biol. 1989 Nov 20;210(2):369–381. doi: 10.1016/0022-2836(89)90337-9. [DOI] [PubMed] [Google Scholar]
  12. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klevit R. E., Wemmer D. E., Reid B. R. 1H NMR studies on the interaction between distamycin A and a symmetrical DNA dodecamer. Biochemistry. 1986 Jun 3;25(11):3296–3303. doi: 10.1021/bi00359a032. [DOI] [PubMed] [Google Scholar]
  14. Kopka M. L., Yoon C., Goodsell D., Pjura P., Dickerson R. E. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1376–1380. doi: 10.1073/pnas.82.5.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee M., Rhodes A. L., Wyatt M. D., D'Incalci M., Forrow S., Hartley J. A. In vitro cytotoxicity of GC sequence directed alkylating agents related to distamycin. J Med Chem. 1993 Apr 2;36(7):863–870. doi: 10.1021/jm00059a011. [DOI] [PubMed] [Google Scholar]
  16. Lee M., Roldan M. C., Haskell M. K., McAdam S. R., Hartley J. A. In vitro photoinduced cytotoxicity and DNA binding properties of psoralen and coumarin conjugates of netropsin analogues: DNA sequence-directed alkylation and cross-link formation. J Med Chem. 1994 Apr 15;37(8):1208–1213. doi: 10.1021/jm00034a019. [DOI] [PubMed] [Google Scholar]
  17. Lown J. W., Krowicki K., Bhat U. G., Skorobogaty A., Ward B., Dabrowiak J. C. Molecular recognition between oligopeptides and nucleic acids: novel imidazole-containing oligopeptides related to netropsin that exhibit altered DNA sequence specificity. Biochemistry. 1986 Nov 18;25(23):7408–7416. doi: 10.1021/bi00371a024. [DOI] [PubMed] [Google Scholar]
  18. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  19. Marky L. A., Breslauer K. J. Origins of netropsin binding affinity and specificity: correlations of thermodynamic and structural data. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4359–4363. doi: 10.1073/pnas.84.13.4359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mrksich M., Wade W. S., Dwyer T. J., Geierstanger B. H., Wemmer D. E., Dervan P. B. Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7586–7590. doi: 10.1073/pnas.89.16.7586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Norman D., Live D., Sastry M., Lipman R., Hingerty B. E., Tomasz M., Broyde S., Patel D. J. NMR and computational characterization of mitomycin cross-linked to adjacent deoxyguanosines in the minor groove of the d(T-A-C-G-T-A).d(T-A-C-G-T-A) duplex. Biochemistry. 1990 Mar 20;29(11):2861–2875. doi: 10.1021/bi00463a032. [DOI] [PubMed] [Google Scholar]
  22. Patel D. J. Antibiotic-DNA interactions: intermolecular nuclear Overhauser effects in the netropsin-d(C-G-C-G-A-A-T-T-C-G-C-G) complex in solution. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6424–6428. doi: 10.1073/pnas.79.21.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Patel D. J. Netropsin . dG-dG-dA-dA-dT-dT-dC-dC complex. Antibiotic binding at adenine . thymine base pairs in the minor groove of the self-complementary octanucleotide duplex. Eur J Biochem. 1979 Sep;99(2):369–378. doi: 10.1111/j.1432-1033.1979.tb13265.x. [DOI] [PubMed] [Google Scholar]
  24. Pelton J. G., Wemmer D. E. Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5723–5727. doi: 10.1073/pnas.86.15.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pelton J. G., Wemmer D. E. Structural modeling of the distamycin A-d(CGCGAATTCGCG)2 complex using 2D NMR and molecular mechanics. Biochemistry. 1988 Oct 18;27(21):8088–8096. doi: 10.1021/bi00421a018. [DOI] [PubMed] [Google Scholar]
  26. Pinto A. L., Lippard S. J. Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta. 1985;780(3):167–180. doi: 10.1016/0304-419x(85)90001-0. [DOI] [PubMed] [Google Scholar]
  27. Spielmann H. P., Fagan P. A., Bregant T. M., Little R. D., Wemmer D. E. The binding modes of a rationally designed photoactivated DNA nuclease determined by NMR. Nucleic Acids Res. 1995 May 11;23(9):1576–1583. doi: 10.1093/nar/23.9.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Teng S. P., Woodson S. A., Crothers D. M. DNA sequence specificity of mitomycin cross-linking. Biochemistry. 1989 May 2;28(9):3901–3907. doi: 10.1021/bi00435a041. [DOI] [PubMed] [Google Scholar]
  29. Weidner M. F., Sigurdsson S. T., Hopkins P. B. Sequence preferences of DNA interstrand cross-linking agents: dG-to-dG cross-linking at 5'-CG by structurally simplified analogues of mitomycin C. Biochemistry. 1990 Oct 2;29(39):9225–9233. doi: 10.1021/bi00491a017. [DOI] [PubMed] [Google Scholar]
  30. Zhang Y., Chen F. X., Mehta P., Gold B. Groove- and sequence-selective alkylation of DNA by sulfonate esters tethered to lexitropsins. Biochemistry. 1993 Aug 10;32(31):7954–7965. doi: 10.1021/bi00082a017. [DOI] [PubMed] [Google Scholar]
  31. Zimmer C., Wähnert U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog Biophys Mol Biol. 1986;47(1):31–112. doi: 10.1016/0079-6107(86)90005-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES