Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Apr 15;24(8):1389–1394. doi: 10.1093/nar/24.8.1389

Repair of products of oxidative DNA base damage in human cells.

P Jaruga 1, M Dizdaroglu 1
PMCID: PMC145821  PMID: 8628669

Abstract

Oxidative DNA damage is the most frequent type of damage encountered by aerobic cells and may play an important role in biological processes such as mutagenesis, carcinogenesis and aging in humans. Oxidative damage generates a myriad of modifications in DNA. We investigated the cellular repair of DNA base damage products in DNA of cultured human lymphoblast cells, which were exposed to oxidative stress by H2O2. This DNA-damaging agent is known to cause base modifications in genomic DNA of mammalian cells [Dizdaroglu, M., Nackerdien, Z., Chao, B.-C., Gajewski, E. and Rao, G. (1991) Arch. Biochem. Biophys. 285, 388-390]. Following treatment with H2O2, the culture medium was freed from H2O2 and cells were incubated for time periods ranging from 10 min to 6 h. DNA was isolated from control cells, hydrogen peroxide-treated cells and cells incubated after H2O2 exposure. DNA samples were analyzed by gas chromatography/isotope-dilution mass spectrometry. Eleven modified bases were identified and quantified. The results showed a significant formation of these DNA base products upon H2O2-treatment of cells. Subsequent incubation of cells caused a time-dependent excision of these products from cellular DNA. The cell viability did not change significantly by various treatments. There were distinct differences between the kinetics of excision of individual products. The observed excisions were attributed to DNA repair in cells. The rate of repair of purine lesions was slower than that of pyrimidine lesions. Most of the identified products are known to possess various premutagenic properties. The results of this work may contribute to the understanding of the cellular repair of oxidative DNA damage in human and other mammalian cells.

Full Text

The Full Text of this article is available as a PDF (86.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Konishi T., Hirano T., Kasai H., Shimizu K., Kashimura M., Higashi K. Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus. Biochem Biophys Res Commun. 1995 Jan 17;206(2):548–555. doi: 10.1006/bbrc.1995.1078. [DOI] [PubMed] [Google Scholar]
  2. Akasaka S., Yamamoto K. Hydrogen peroxide induces G:C to T:A and G:C to C:G transversions in the supF gene of Escherichia coli. Mol Gen Genet. 1994 Jun 3;243(5):500–505. doi: 10.1007/BF00284197. [DOI] [PubMed] [Google Scholar]
  3. Bessho T., Tano K., Kasai H., Ohtsuka E., Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in human cells. J Biol Chem. 1993 Sep 15;268(26):19416–19421. [PubMed] [Google Scholar]
  4. Boiteux S., Gajewski E., Laval J., Dizdaroglu M. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry. 1992 Jan 14;31(1):106–110. doi: 10.1021/bi00116a016. [DOI] [PubMed] [Google Scholar]
  5. Boiteux S., Gajewski E., Laval J., Dizdaroglu M. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry. 1992 Jan 14;31(1):106–110. doi: 10.1021/bi00116a016. [DOI] [PubMed] [Google Scholar]
  6. Boiteux S. Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two DNA glycosylases that repair oxidative damage in DNA. J Photochem Photobiol B. 1993 Jul;19(2):87–96. doi: 10.1016/1011-1344(93)87101-r. [DOI] [PubMed] [Google Scholar]
  7. Breimer L. H. Enzymatic excision from gamma-irradiated polydeoxyribonucleotides of adenine residues whose imidazole rings have been ruptured. Nucleic Acids Res. 1984 Aug 24;12(16):6359–6367. doi: 10.1093/nar/12.16.6359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breimer L. H., Lindahl T. DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem. 1984 May 10;259(9):5543–5548. [PubMed] [Google Scholar]
  9. Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992 Jan 5;267(1):166–172. [PubMed] [Google Scholar]
  10. Chung M. H., Kim H. S., Ohtsuka E., Kasai H., Yamamoto F., Nishimura S. An endonuclease activity in human polymorphonuclear neutrophils that removes 8-hydroxyguanine residues from DNA+. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1472–1478. doi: 10.1016/0006-291x(91)91059-l. [DOI] [PubMed] [Google Scholar]
  11. Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
  12. Dizdaroglu M. Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol. 1994;234:3–16. doi: 10.1016/0076-6879(94)34072-2. [DOI] [PubMed] [Google Scholar]
  13. Dizdaroglu M., Karakaya A., Jaruga P., Slupphaug G., Krokan H. E. Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage. Nucleic Acids Res. 1996 Feb 1;24(3):418–422. doi: 10.1093/nar/24.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dizdaroglu M., Nackerdien Z., Chao B. C., Gajewski E., Rao G. Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch Biochem Biophys. 1991 Mar;285(2):388–390. doi: 10.1016/0003-9861(91)90378-v. [DOI] [PubMed] [Google Scholar]
  15. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res. 1992 Sep;275(3-6):331–342. doi: 10.1016/0921-8734(92)90036-o. [DOI] [PubMed] [Google Scholar]
  16. Dizdaroglu M., Zastawny T. H., Carmical J. R., Lloyd R. S. A novel DNA N-glycosylase activity of E. coli T4 endonuclease V that excises 4,6-diamino-5-formamidopyrimidine from DNA, a UV-radiation- and hydroxyl radical-induced product of adenine. Mutat Res. 1996 Jan 2;362(1):1–8. doi: 10.1016/0921-8777(95)00025-9. [DOI] [PubMed] [Google Scholar]
  17. Doetsch P. W., Zasatawny T. H., Martin A. M., Dizdaroglu M. Monomeric base damage products from adenine, guanine, and thymine induced by exposure of DNA to ultraviolet radiation. Biochemistry. 1995 Jan 24;34(3):737–742. doi: 10.1021/bi00003a005. [DOI] [PubMed] [Google Scholar]
  18. Feig D. I., Sowers L. C., Loeb L. A. Reverse chemical mutagenesis: identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6609–6613. doi: 10.1073/pnas.91.14.6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  20. Hatahet Z., Kow Y. W., Purmal A. A., Cunningham R. P., Wallace S. S. New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase. J Biol Chem. 1994 Jul 22;269(29):18814–18820. [PubMed] [Google Scholar]
  21. Huang J. C., Hsu D. S., Kazantsev A., Sancar A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12213–12217. doi: 10.1073/pnas.91.25.12213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kamiya H., Miura H., Murata-Kamiya N., Ishikawa H., Sakaguchi T., Inoue H., Sasaki T., Masutani C., Hanaoka F., Nishimura S. 8-Hydroxyadenine (7,8-dihydro-8-oxoadenine) induces misincorporation in in vitro DNA synthesis and mutations in NIH 3T3 cells. Nucleic Acids Res. 1995 Aug 11;23(15):2893–2899. doi: 10.1093/nar/23.15.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kamiya H., Ueda T., Ohgi T., Matsukage A., Kasai H. Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res. 1995 Mar 11;23(5):761–766. doi: 10.1093/nar/23.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kasai H., Crain P. F., Kuchino Y., Nishimura S., Ootsuyama A., Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis. 1986 Nov;7(11):1849–1851. doi: 10.1093/carcin/7.11.1849. [DOI] [PubMed] [Google Scholar]
  25. Levy D. D., Teebor G. W. Site directed substitution of 5-hydroxymethyluracil for thymine in replicating phi X-174am3 DNA via synthesis of 5-hydroxymethyl-2'-deoxyuridine-5'-triphosphate. Nucleic Acids Res. 1991 Jun 25;19(12):3337–3343. doi: 10.1093/nar/19.12.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moraes E. C., Keyse S. M., Pidoux M., Tyrrell R. M. The spectrum of mutations generated by passage of a hydrogen peroxide damaged shuttle vector plasmid through a mammalian host. Nucleic Acids Res. 1989 Oct 25;17(20):8301–8312. doi: 10.1093/nar/17.20.8301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moriya M., Ou C., Bodepudi V., Johnson F., Takeshita M., Grollman A. P. Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res. 1991 May;254(3):281–288. doi: 10.1016/0921-8777(91)90067-y. [DOI] [PubMed] [Google Scholar]
  28. Ono T., Negishi K., Hayatsu H. Spectra of superoxide-induced mutations in the lacI gene of a wild-type and a mutM strain of Escherichia coli K-12. Mutat Res. 1995 Feb;326(2):175–183. doi: 10.1016/0027-5107(94)00167-4. [DOI] [PubMed] [Google Scholar]
  29. Purmal A. A., Kow Y. W., Wallace S. S. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Nucleic Acids Res. 1994 Jan 11;22(1):72–78. doi: 10.1093/nar/22.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sancar A. Excision repair in mammalian cells. J Biol Chem. 1995 Jul 7;270(27):15915–15918. doi: 10.1074/jbc.270.27.15915. [DOI] [PubMed] [Google Scholar]
  31. Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
  32. Shirnamé-Moré L., Rossman T. G., Troll W., Teebor G. W., Frenkel K. Genetic effects of 5-hydroxymethyl-2'-deoxyuridine, a product of ionizing radiation. Mutat Res. 1987 Jun;178(2):177–186. doi: 10.1016/0027-5107(87)90267-3. [DOI] [PubMed] [Google Scholar]
  33. Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991 Sep 30;91(3C):31S–38S. doi: 10.1016/0002-9343(91)90281-2. [DOI] [PubMed] [Google Scholar]
  34. Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4690–4694. doi: 10.1073/pnas.88.11.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Téoule R. Radiation-induced DNA damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Apr;51(4):573–589. doi: 10.1080/09553008414552111. [DOI] [PubMed] [Google Scholar]
  36. Wallace S. S. DNA damages processed by base excision repair: biological consequences. Int J Radiat Biol. 1994 Nov;66(5):579–589. doi: 10.1080/09553009414551661. [DOI] [PubMed] [Google Scholar]
  37. Wood M. L., Dizdaroglu M., Gajewski E., Essigmann J. M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990 Jul 31;29(30):7024–7032. doi: 10.1021/bi00482a011. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto F., Kasai H., Bessho T., Chung M. H., Inoue H., Ohtsuka E., Hori T., Nishimura S. Ubiquitous presence in mammalian cells of enzymatic activity specifically cleaving 8-hydroxyguanine-containing DNA. Jpn J Cancer Res. 1992 Apr;83(4):351–357. doi: 10.1111/j.1349-7006.1992.tb00114.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zastawny T. H., Doetsch P. W., Dizdaroglu M. A novel activity of E. coli uracil DNA N-glycosylase excision of isodialuric acid (5,6-dihydroxyuracil), a major product of oxidative DNA damage, from DNA. FEBS Lett. 1995 May 15;364(3):255–258. doi: 10.1016/0014-5793(95)00400-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES