Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 May 1;24(9):1734–1741. doi: 10.1093/nar/24.9.1734

Contribution of ultra-short invasive elements to the evolution of the mitochondrial genome in the genus Podospora.

F Koll 1, J Boulay 1, L Belcour 1, Y d'Aubenton-Carafa 1
PMCID: PMC145831  PMID: 8649993

Abstract

In the filamentous fungus Podospora anserina, senescence is associated with major rearrangements of the mitochondrial DNA. The undecamer GGCGCAAGCTC has been described as a preferential site for these recombination events. We show that: (i) copies of this short sequence GGCGCAAGCTC are present in unexpectedly high numbers in the mitochondrial genome of this fungus; (ii) a short cluster of this sequence, localised in a group II intronic ORF, encodes amino acids that disrupt a protein domain that is otherwise highly conserved between various species; (iii) most of the polymorphisms observed between three related species, P.anserina, P.curvicolla and P.comata, are associated with the presence/absence of this sequence; (iv) this element lies at the boundaries of major rearrangements of the mitochondrial genomes; (v) at least two other short elements in the Podospora mitochondrial genomes display similar features. We suggest that these short elements, called MUSEs (mitochondrial ultra-short elements), could be mobile and that they contribute to evolution of the mitochondrial genome in the genus Podospora. A model for mobility involving a target DNA-primed reverse transcription step is discussed.

Full Text

The Full Text of this article is available as a PDF (127.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almasan A., Mishra N. C. Recombination by sequence repeats with formation of suppressive or residual mitochondrial DNA in Neurospora. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7684–7688. doi: 10.1073/pnas.88.17.7684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn E. H. Telomerases. Annu Rev Biochem. 1992;61:113–129. doi: 10.1146/annurev.bi.61.070192.000553. [DOI] [PubMed] [Google Scholar]
  3. Butow R. A., Perlman P. S., Grossman L. I. The unusual varl gene of yeast mitochondrial DNA. Science. 1985 Jun 28;228(4707):1496–1501. doi: 10.1126/science.2990030. [DOI] [PubMed] [Google Scholar]
  4. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  5. Cummings D. J., Belcour L., Grandchamp C. Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet. 1979 Mar 27;171(3):239–250. doi: 10.1007/BF00267578. [DOI] [PubMed] [Google Scholar]
  6. Cummings D. J., Domenico J. M., Nelson J. DNA sequence and secondary structures of the large subunit rRNA coding regions and its two class I introns of mitochondrial DNA from Podospora anserina. J Mol Evol. 1989 Mar;28(3):242–255. doi: 10.1007/BF02102482. [DOI] [PubMed] [Google Scholar]
  7. Cummings D. J., McNally K. L., Domenico J. M., Matsuura E. T. The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet. 1990 May;17(5):375–402. doi: 10.1007/BF00334517. [DOI] [PubMed] [Google Scholar]
  8. Deininger P. L., Jolly D. J., Rubin C. M., Friedmann T., Schmid C. W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981 Sep 5;151(1):17–33. doi: 10.1016/0022-2836(81)90219-9. [DOI] [PubMed] [Google Scholar]
  9. Dieckmann C. L., Gandy B. Preferential recombination between GC clusters in yeast mitochondrial DNA. EMBO J. 1987 Dec 20;6(13):4197–4203. doi: 10.1002/j.1460-2075.1987.tb02767.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fassbender S., Brühl K. H., Ciriacy M., Kück U. Reverse transcriptase activity of an intron encoded polypeptide. EMBO J. 1994 May 1;13(9):2075–2083. doi: 10.1002/j.1460-2075.1994.tb06482.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gross S. R., Levine P. H., Metzger S., Glaser G. Recombination and replication of plasmid-like derivatives of a short section of the mitochondrial chromosome of Neurospora crassa. Genetics. 1989 Apr;121(4):693–701. doi: 10.1093/genetics/121.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hermanns J., Osiewacz H. D. The linear mitochondrial plasmid pAL2-1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet. 1992 Dec;22(6):491–500. doi: 10.1007/BF00326415. [DOI] [PubMed] [Google Scholar]
  13. Hermanns J., Osiewacz H. D. Three mitochondrial unassigned open reading frames of Podospora anserina represent remnants of a viral-type RNA polymerase gene. Curr Genet. 1994 Feb;25(2):150–157. doi: 10.1007/BF00309541. [DOI] [PubMed] [Google Scholar]
  14. Hudspeth M. E., Vincent R. D., Perlman P. S., Shumard D. S., Treisman L. O., Grossman L. I. Expandable var1 gene of yeast mitochondrial DNA: in-frame insertions can explain the strain-specific protein size polymorphisms. Proc Natl Acad Sci U S A. 1984 May;81(10):3148–3152. doi: 10.1073/pnas.81.10.3148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hüttenhofer A., Sakai H., Weiss-Brummer B. Site-specific AT-cluster insertions in the mitochondrial 15S rRNA gene of the yeast S. cerevisiae. Nucleic Acids Res. 1988 Sep 12;16(17):8665–8674. doi: 10.1093/nar/16.17.8665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jamet-Vierny C., Begel O., Belcour L. Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell. 1980 Aug;21(1):189–194. doi: 10.1016/0092-8674(80)90126-9. [DOI] [PubMed] [Google Scholar]
  17. Koll F., Belcour L., Vierny C. A 1100-bp sequence of mitochondrial DNA is involved in senescence process in Podospora: study of senescent and mutant cultures. Plasmid. 1985 Sep;14(2):106–117. doi: 10.1016/0147-619x(85)90070-8. [DOI] [PubMed] [Google Scholar]
  18. Lehrman M. A., Goldstein J. L., Russell D. W., Brown M. S. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13;48(5):827–835. doi: 10.1016/0092-8674(87)90079-1. [DOI] [PubMed] [Google Scholar]
  19. Luan D. D., Korman M. H., Jakubczak J. L., Eickbush T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. doi: 10.1016/0092-8674(93)90078-5. [DOI] [PubMed] [Google Scholar]
  20. Makałowski W., Mitchell G. A., Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 1994 Jun;10(6):188–193. doi: 10.1016/0168-9525(94)90254-2. [DOI] [PubMed] [Google Scholar]
  21. Michel F., Lang B. F. Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. 1985 Aug 15;316(6029):641–643. doi: 10.1038/316641a0. [DOI] [PubMed] [Google Scholar]
  22. Nakazono M., Kanno A., Tsutsumi N., Hirai A. Palindromic repeated sequences (PRSs) in the mitochondrial genome of rice: evidence for their insertion after divergence of the genus Oryza from the other Gramineae. Plant Mol Biol. 1994 Jan;24(2):273–281. doi: 10.1007/BF00020167. [DOI] [PubMed] [Google Scholar]
  23. Osiewacz H. D., Hermanns J., Marcou D., Triffi M., Esser K. Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutat Res. 1989 Jan;219(1):9–15. doi: 10.1016/0921-8734(89)90036-2. [DOI] [PubMed] [Google Scholar]
  24. RIZET G. Sur l'impossibilité d'obtenir la multiplication végétative ininterrompue et illimitée de l'ascomycète Podospora anserina. C R Hebd Seances Acad Sci. 1953 Oct 12;237(15):838–840. [PubMed] [Google Scholar]
  25. Robinson N. J., Robinson P. J., Gupta A., Bleasby A. J., Whitton B. A., Morby A. P. Singular over-representation of an octameric palindrome, HIP1, in DNA from many cyanobacteria. Nucleic Acids Res. 1995 Mar 11;23(5):729–735. doi: 10.1093/nar/23.5.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rogers J. H. The origin and evolution of retroposons. Int Rev Cytol. 1985;93:187–279. doi: 10.1016/s0074-7696(08)61375-3. [DOI] [PubMed] [Google Scholar]
  27. Sainsard-Chanet A., Begel O., Belcour L. DNA deletion of mitochondrial introns is correlated with the process of senescence in Podospora anserina. J Mol Biol. 1993 Nov 5;234(1):1–7. doi: 10.1006/jmbi.1993.1558. [DOI] [PubMed] [Google Scholar]
  28. Sainsard-Chanet A., Begel O., Belcour L. DNA double-strand break in vivo at the 3' extremity of exons located upstream of group II introns. Senescence and circular DNA introns in Podospora mitochondria. J Mol Biol. 1994 Oct 7;242(5):630–643. doi: 10.1006/jmbi.1994.1613. [DOI] [PubMed] [Google Scholar]
  29. Singer M. F. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 1982 Mar;28(3):433–434. doi: 10.1016/0092-8674(82)90194-5. [DOI] [PubMed] [Google Scholar]
  30. Sor F., Fukuhara H. Nature of an inserted sequence in the mitochondrial gene coding for the 15S ribosomal RNA of yeast. Nucleic Acids Res. 1982 Mar 11;10(5):1625–1633. doi: 10.1093/nar/10.5.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Staden R. Methods for calculating the probabilities of finding patterns in sequences. Comput Appl Biosci. 1989 Apr;5(2):89–96. doi: 10.1093/bioinformatics/5.2.89. [DOI] [PubMed] [Google Scholar]
  32. Steinhilber W., Cummings D. J. A DNA polymerase activity with characteristics of a reverse transcriptase in Podospora anserina. Curr Genet. 1986;10(5):389–392. doi: 10.1007/BF00418411. [DOI] [PubMed] [Google Scholar]
  33. Syvanen M. The evolutionary implications of mobile genetic elements. Annu Rev Genet. 1984;18:271–293. doi: 10.1146/annurev.ge.18.120184.001415. [DOI] [PubMed] [Google Scholar]
  34. Turker M. S., Domenico J. M., Cummings D. J. Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. A potential role for an 11 base-pair consensus sequence in the excision process. J Mol Biol. 1987 Nov 20;198(2):171–185. doi: 10.1016/0022-2836(87)90304-4. [DOI] [PubMed] [Google Scholar]
  35. Vidaud D., Vidaud M., Bahnak B. R., Siguret V., Gispert Sanchez S., Laurian Y., Meyer D., Goossens M., Lavergne J. M. Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet. 1993;1(1):30–36. doi: 10.1159/000472385. [DOI] [PubMed] [Google Scholar]
  36. Weiller G. F., Bruckner H., Kim S. H., Pratje E., Schweyen R. J. A GC cluster repeat is a hotspot for mit- macro-deletions in yeast mitochondrial DNA. Mol Gen Genet. 1991 Apr;226(1-2):233–240. doi: 10.1007/BF00273608. [DOI] [PubMed] [Google Scholar]
  37. Weiller G., Schueller C. M., Schweyen R. J. Putative target sites for mobile G + C rich clusters in yeast mitochondrial DNA: single elements and tandem arrays. Mol Gen Genet. 1989 Aug;218(2):272–283. doi: 10.1007/BF00331278. [DOI] [PubMed] [Google Scholar]
  38. Wenzlau J. M., Perlman P. S. Mobility of two optional G + C-rich clusters of the var1 gene of yeast mitochondrial DNA. Genetics. 1990 Sep;126(1):53–62. doi: 10.1093/genetics/126.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wright R. M., Horrum M. A., Cummings D. J. Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina? Cell. 1982 Jun;29(2):505–515. doi: 10.1016/0092-8674(82)90167-2. [DOI] [PubMed] [Google Scholar]
  40. Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yin S., Heckman J., RajBhandary U. L. Highly conserved GC-rich palindromic DNA sequences flank tRNA genes in Neurospora crassa mitochondria. Cell. 1981 Nov;26(3 Pt 1):325–332. doi: 10.1016/0092-8674(81)90201-4. [DOI] [PubMed] [Google Scholar]
  42. Zimmerly S., Guo H., Perlman P. S., Lambowitz A. M. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. 1995 Aug 25;82(4):545–554. doi: 10.1016/0092-8674(95)90027-6. [DOI] [PubMed] [Google Scholar]
  43. de Vries H., Alzner-DeWeerd B., Breitenberger C. A., Chang D. D., de Jonge J. C., RajBhandary U. L. The E35 stopper mutant of Neurospora crassa: precise localization of deletion endpoints in mitochondrial DNA and evidence that the deleted DNA codes for a subunit of NADH dehydrogenase. EMBO J. 1986 Apr;5(4):779–785. doi: 10.1002/j.1460-2075.1986.tb04281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. de Zamaroczy M., Bernardi G. The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene. 1986;41(1):1–22. doi: 10.1016/0378-1119(86)90262-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES