Abstract
N-Hydroxypyridine-2-thione (2-HPT), known to release hydroxyl radicals on irradiation with visible light, and two related compounds, viz. N-hydroxypyridine-4-thione (4-HPT) and N-hydroxyacridine-9-thione (HAT), were tested for their potency to induce DNA damage in L1210 mouse leukemia cells and in isolated DNA from bacteriophage PM2. DNA single-strand breaks and modifications sensitive to various repair endonucleases (Fpg protein, endonuclease III, exonuclease III, T4 endonuclease V) were quantified. Illumination of cell-free DNA in the presence of 2-HPT and 4-HPT gave rise to damage profiles characteristic for hydroxyl radicals, i.e. single-strand breaks and the various endonuclease-sensitive modifications were formed in the same ratios as after exposure to established hydroxyl radical sources. In contrast, HAT plus light gave rise to a completely different DNA damage profile, namely that characteristic for singlet oxygen. Experiments with various scavengers (t-butanol, catalase, superoxide dismutase) and in D2O as solvent confirmed that hydroxyl radicals are directly responsible for the DNA damage caused by photoexcited 2-HPT and 4-HPT, while the damage by HAT plus light is mediated by singlet oxygen and type I reactions. The type of DNA damage characteristic of hydroxyl radicals was also observed in L1210 mouse leukemia cells when treated with 2-HPT plus light or with H2O2 at 0 degrees C. t-Butanol (2%) inhibited the cellular DNA damage by approximately 50%. A dose of 2-HPT plus light that generated single-strand breaks at a frequency of 5 x 10(-7)/bp was associated with 50% cell survival. No DNA damage and cytotoxicity was observed after treatment with 2-HPT in the dark. We propose that 2-HTP and 4-HTP may serve as new agents to study the consequences of DNA damage induced by hydroxyl radicals in cells. In addition, the data provide direct evidence that hydroxyl radicals are ultimately responsible for the genotoxic effects caused by H2O2 in the dark.
Full Text
The Full Text of this article is available as a PDF (115.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
- Ballmaier D., Epe B. Oxidative DNA damage induced by potassium bromate under cell-free conditions and in mammalian cells. Carcinogenesis. 1995 Feb;16(2):335–342. doi: 10.1093/carcin/16.2.335. [DOI] [PubMed] [Google Scholar]
- Blatt J., Taylor S. R., Kontoghiorghes G. J. Comparison of activity of deferoxamine with that of oral iron chelators against human neuroblastoma cell lines. Cancer Res. 1989 Jun 1;49(11):2925–2927. [PubMed] [Google Scholar]
- Boiteux S., O'Connor T. R., Lederer F., Gouyette A., Laval J. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J Biol Chem. 1990 Mar 5;265(7):3916–3922. [PubMed] [Google Scholar]
- Boiteux S. Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two DNA glycosylases that repair oxidative damage in DNA. J Photochem Photobiol B. 1993 Jul;19(2):87–96. doi: 10.1016/1011-1344(93)87101-r. [DOI] [PubMed] [Google Scholar]
- Breimer L. H., Lindahl T. Thymine lesions produced by ionizing radiation in double-stranded DNA. Biochemistry. 1985 Jul 16;24(15):4018–4022. doi: 10.1021/bi00336a032. [DOI] [PubMed] [Google Scholar]
- Breimer L. H. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol Carcinog. 1990;3(4):188–197. doi: 10.1002/mc.2940030405. [DOI] [PubMed] [Google Scholar]
- Cantoni O., Sestili P., Cattabeni F., Bellomo G., Pou S., Cohen M., Cerutti P. Calcium chelator Quin 2 prevents hydrogen-peroxide-induced DNA breakage and cytotoxicity. Eur J Biochem. 1989 Jun 15;182(2):209–212. doi: 10.1111/j.1432-1033.1989.tb14819.x. [DOI] [PubMed] [Google Scholar]
- Clayson D. B., Mehta R., Iverson F. International Commission for Protection Against Environmental Mutagens and Carcinogens. Oxidative DNA damage--the effects of certain genotoxic and operationally non-genotoxic carcinogens. Mutat Res. 1994 Feb;317(1):25–42. doi: 10.1016/0165-1110(94)90010-8. [DOI] [PubMed] [Google Scholar]
- Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
- Epe B., Hegler J. Oxidative DNA damage: endonuclease fingerprinting. Methods Enzymol. 1994;234:122–131. doi: 10.1016/0076-6879(94)34083-8. [DOI] [PubMed] [Google Scholar]
- Epe B., Häring M., Ramaiah D., Stopper H., Abou-Elzahab M. M., Adam W., Saha-Möller C. R. DNA damage induced by furocoumarin hydroperoxides plus UV (360 nm). Carcinogenesis. 1993 Nov;14(11):2271–2276. doi: 10.1093/carcin/14.11.2271. [DOI] [PubMed] [Google Scholar]
- Epe B., Mützel P., Adam W. DNA damage by oxygen radicals and excited state species: a comparative study using enzymatic probes in vitro. Chem Biol Interact. 1988;67(1-2):149–165. doi: 10.1016/0009-2797(88)90094-4. [DOI] [PubMed] [Google Scholar]
- Epe B., Pflaum M., Boiteux S. DNA damage induced by photosensitizers in cellular and cell-free systems. Mutat Res. 1993 May;299(3-4):135–145. doi: 10.1016/0165-1218(93)90091-q. [DOI] [PubMed] [Google Scholar]
- Epe B., Pflaum M., Häring M., Hegler J., Rüdiger H. Use of repair endonucleases to characterize DNA damage induced by reactive oxygen species in cellular and cell-free systems. Toxicol Lett. 1993 Apr;67(1-3):57–72. doi: 10.1016/0378-4274(93)90046-z. [DOI] [PubMed] [Google Scholar]
- Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992;53(1):127–166. doi: 10.1016/0163-7258(92)90047-4. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. Free radicals in disease processes: a compilation of cause and consequence. Free Radic Res Commun. 1993;19(3):141–158. doi: 10.3109/10715769309111598. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Aruoma O. I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991 Apr 9;281(1-2):9–19. doi: 10.1016/0014-5793(91)80347-6. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994 Sep 10;344(8924):721–724. doi: 10.1016/s0140-6736(94)92211-x. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986 May 1;246(2):501–514. doi: 10.1016/0003-9861(86)90305-x. [DOI] [PubMed] [Google Scholar]
- Hess K. M., Dix T. A. Evaluation of N-hydroxy-2-thiopyridone as a nonmetal dependent source of the hydroxyl radical (HO.) in aqueous systems. Anal Biochem. 1992 Nov 1;206(2):309–314. doi: 10.1016/0003-2697(92)90371-d. [DOI] [PubMed] [Google Scholar]
- Häring M., Rüdiger H., Demple B., Boiteux S., Epe B. Recognition of oxidized abasic sites by repair endonucleases. Nucleic Acids Res. 1994 Jun 11;22(11):2010–2015. doi: 10.1093/nar/22.11.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joenje H. Genetic toxicology of oxygen. Mutat Res. 1989 Jul;219(4):193–208. doi: 10.1016/0921-8734(89)90001-5. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Repair of intrinsic DNA lesions. Mutat Res. 1990 May;238(3):305–311. doi: 10.1016/0165-1110(90)90022-4. [DOI] [PubMed] [Google Scholar]
- Menghini R. Genotoxicity of active oxygen species in mammalian cells. Mutat Res. 1988 May;195(3):215–230. [PubMed] [Google Scholar]
- Möller M., Stopper H., Häring M., Schleger Y., Epe B., Adam W., Saha-Möller C. R. Genotoxicity induced by furocoumarin hydroperoxides in mammalian cells upon UVA irradiation. Biochem Biophys Res Commun. 1995 Nov 13;216(2):693–701. doi: 10.1006/bbrc.1995.2677. [DOI] [PubMed] [Google Scholar]
- Müller E., Boiteux S., Cunningham R. P., Epe B. Enzymatic recognition of DNA modifications induced by singlet oxygen and photosensitizers. Nucleic Acids Res. 1990 Oct 25;18(20):5969–5973. doi: 10.1093/nar/18.20.5969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakabeppu Y., Yamashita K., Sekiguchi M. Purification and characterization of normal and mutant forms of T4 endonuclease V. J Biol Chem. 1982 Mar 10;257(5):2556–2562. [PubMed] [Google Scholar]
- Nassi-Calò L., Mello-Filho C., Meneghini R. o-phenanthroline protects mammalian cells from hydrogen peroxide-induced gene mutation and morphological transformation. Carcinogenesis. 1989 Jun;10(6):1055–1057. doi: 10.1093/carcin/10.6.1055. [DOI] [PubMed] [Google Scholar]
- Pflaum M., Boiteux S., Epe B. Visible light generates oxidative DNA base modifications in high excess of strand breaks in mammalian cells. Carcinogenesis. 1994 Feb;15(2):297–300. doi: 10.1093/carcin/15.2.297. [DOI] [PubMed] [Google Scholar]
- Reszka K. J., Chignell C. F. Photochemistry of 2-mercaptopyridines. Part 2. An EPR and spin-trapping investigation using 2-methyl-2-nitrosopropane and aci-nitromethane as spin traps in aqueous solutions. Photochem Photobiol. 1994 Nov;60(5):450–454. doi: 10.1111/j.1751-1097.1994.tb05132.x. [DOI] [PubMed] [Google Scholar]
- Roots R., Okada S. Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks of killing of mammalian cells. Radiat Res. 1975 Nov;64(2):306–320. [PubMed] [Google Scholar]
- Salditt M., Braunstein S. N., Camerini-Otero R. D., Franklin R. M. Structure and synthesis of a lipid-containing bacteriophage. X. Improved techniques for the purification of bacteriophage PM2. Virology. 1972 Apr;48(1):259–262. doi: 10.1016/0042-6822(72)90133-x. [DOI] [PubMed] [Google Scholar]
- Shigenaga M. K., Hagen T. M., Ames B. N. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10771–10778. doi: 10.1073/pnas.91.23.10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tchou J., Bodepudi V., Shibutani S., Antoshechkin I., Miller J., Grollman A. P., Johnson F. Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. J Biol Chem. 1994 May 27;269(21):15318–15324. [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992 May 1;256(5057):628–632. doi: 10.1126/science.1533953. [DOI] [PubMed] [Google Scholar]
- Wallace S. S. AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ Mol Mutagen. 1988;12(4):431–477. doi: 10.1002/em.2860120411. [DOI] [PubMed] [Google Scholar]
- Weis M., Kass G. E., Orrenius S. Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants. Biochem Pharmacol. 1994 Jun 15;47(12):2147–2156. doi: 10.1016/0006-2952(94)90249-6. [DOI] [PubMed] [Google Scholar]