Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 May 1;24(9):1719–1726. doi: 10.1093/nar/24.9.1719

Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases.

G M Fuentes 1, P J Fay 1, R A Bambara 1
PMCID: PMC145840  PMID: 8649991

Abstract

During retroviral reverse transcription the genomic RNA is degraded by the RNase H activity of reverse transcriptase (RT). Previous results suggest that after RNA-directed DNA synthesis, fragments of RNA remain annealed to the newly synthesized DNA [DeStefano et al.(1991) J. Biol.Chem. 266, 7423-7431]. These must be removed to allow synthesis of the second DNA strand. We measured the ability of HIV-, AMV- and MuLV-RT to coordinate DNA-dependent DNA synthesis and removal of downstream segments of RNA. The substrates employed were DNA templates having upstream DNA and downstream RNA primers. We found that none of the wild type RTs elongated the upstream DNA without simultaneous degradation of the RNA. Consistent with these results, HIV-, AMV- and MuLV-RT showed relatively higher affinity for RNA than for DNA oligonucleotides bound to a DNA template. Differences were observed in the RNA degradation and DNA extension patterns generated by the different RTs. AMV-RT degraded the RNA to segments 11-12 nt long, and readily elongated the upstream DNA to the end of the template. MuLV- and HIV-RT degraded the RNA primarily to segments 15-16 nt long. At low concentrations of the latter two RTs, the DNA primer stalled when it encountered the 5'-end of the RNA. In sufficient excess, all of the RTs elongated the upstream primer without stalling. Even though we were unable to detect displacement of the downstream RNA by the wild type RTs, MuLV- and HIV-RT lacking RNase H, were able to elongate the upstream DNA to the end of the template without degradation of the RNA. This suggests that degradation of downstream pieces of RNA is not absolutely required before synthesis of the plus strand DNA. The implications of these findings for viral replication are discussed.

Full Text

The Full Text of this article is available as a PDF (152.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collett M. S., Leis J. P., Smith M. S., Faras A. J. Unwinding-like activity associated with avian retrovirus RNA-directed DNA polymerase. J Virol. 1978 May;26(2):498–509. doi: 10.1128/jvi.26.2.498-509.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DeStefano J. J., Bambara R. A., Fay P. J. Parameters that influence the binding of human immunodeficiency virus reverse transcriptase to nucleic acid structures. Biochemistry. 1993 Jul 13;32(27):6908–6915. doi: 10.1021/bi00078a014. [DOI] [PubMed] [Google Scholar]
  3. DeStefano J. J., Buiser R. G., Mallaber L. M., Bambara R. A., Fay P. J. Human immunodeficiency virus reverse transcriptase displays a partially processive 3' to 5' endonuclease activity. J Biol Chem. 1991 Dec 25;266(36):24295–24301. [PubMed] [Google Scholar]
  4. DeStefano J. J., Buiser R. G., Mallaber L. M., Myers T. W., Bambara R. A., Fay P. J. Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J Biol Chem. 1991 Apr 25;266(12):7423–7431. [PubMed] [Google Scholar]
  5. DeStefano J. J., Mallaber L. M., Fay P. J., Bambara R. A. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases. Nucleic Acids Res. 1994 Sep 11;22(18):3793–3800. doi: 10.1093/nar/22.18.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeStefano J. J. The orientation of binding of human immunodeficiency virus reverse transcriptase on nucleic acid hybrids. Nucleic Acids Res. 1995 Oct 11;23(19):3901–3908. doi: 10.1093/nar/23.19.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dudding L. R., Nkabinde N. C., Mizrahi V. Analysis of the RNA- and DNA-dependent DNA polymerase activities of point mutants of HIV-1 reverse transcriptase lacking ribonuclease H activity. Biochemistry. 1991 Oct 29;30(43):10498–10506. doi: 10.1021/bi00107a019. [DOI] [PubMed] [Google Scholar]
  8. Fu T. B., Taylor J. When retroviral reverse transcriptases reach the end of their RNA templates. J Virol. 1992 Jul;66(7):4271–4278. doi: 10.1128/jvi.66.7.4271-4278.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fuentes G. M., Rodríguez-Rodríguez L., Fay P. J., Bambara R. A. Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase. J Biol Chem. 1995 Nov 24;270(47):28169–28176. doi: 10.1074/jbc.270.47.28169. [DOI] [PubMed] [Google Scholar]
  10. Fuentes G. M., Rodríguez-Rodríguez L., Palaniappan C., Fay P. J., Bambara R. A. Strand displacement synthesis of the long terminal repeats by HIV reverse transcriptase. J Biol Chem. 1996 Jan 26;271(4):1966–1971. doi: 10.1074/jbc.271.4.1966. [DOI] [PubMed] [Google Scholar]
  11. Furfine E. S., Reardon J. E. Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J Biol Chem. 1991 Jan 5;266(1):406–412. [PubMed] [Google Scholar]
  12. Golomb M., Grandgenett D. P. Endonuclease activity of purified RNA-directed DNA polymerase from avian myeloblastosis virus. J Biol Chem. 1979 Mar 10;254(5):1606–1613. [PubMed] [Google Scholar]
  13. Gopalakrishnan V., Peliska J. A., Benkovic S. J. Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10763–10767. doi: 10.1073/pnas.89.22.10763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hottiger M., Podust V. N., Thimmig R. L., McHenry C., Hübscher U. Strand displacement activity of the human immunodeficiency virus type 1 reverse transcriptase heterodimer and its individual subunits. J Biol Chem. 1994 Jan 14;269(2):986–991. [PubMed] [Google Scholar]
  15. Huber H. E., McCoy J. M., Seehra J. S., Richardson C. C. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. J Biol Chem. 1989 Mar 15;264(8):4669–4678. [PubMed] [Google Scholar]
  16. Kati W. M., Johnson K. A., Jerva L. F., Anderson K. S. Mechanism and fidelity of HIV reverse transcriptase. J Biol Chem. 1992 Dec 25;267(36):25988–25997. [PubMed] [Google Scholar]
  17. Lightfoote M. M., Coligan J. E., Folks T. M., Fauci A. S., Martin M. A., Venkatesan S. Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus. J Virol. 1986 Nov;60(2):771–775. doi: 10.1128/jvi.60.2.771-775.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palaniappan C., Fuentes G. M., Rodríguez-Rodríguez L., Fay P. J., Bambara R. A. Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV-1 reverse transcriptase RNase H. J Biol Chem. 1996 Jan 26;271(4):2063–2070. [PubMed] [Google Scholar]
  19. Peliska J. A., Benkovic S. J. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science. 1992 Nov 13;258(5085):1112–1118. doi: 10.1126/science.1279806. [DOI] [PubMed] [Google Scholar]
  20. Randolph C. A., Champoux J. J. The use of DNA and RNA oligonucleotides in hybrid structures with longer polynucleotide chains to probe the structural requirements for moloney murine leukemia virus plus strand priming. J Biol Chem. 1994 Jul 29;269(30):19207–19215. [PubMed] [Google Scholar]
  21. Schatz O., Cromme F. V., Grüninger-Leitch F., Le Grice S. F. Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett. 1989 Nov 6;257(2):311–314. doi: 10.1016/0014-5793(89)81559-5. [DOI] [PubMed] [Google Scholar]
  22. Schatz O., Mous J., Le Grice S. F. HIV-1 RT-associated ribonuclease H displays both endonuclease and 3'----5' exonuclease activity. EMBO J. 1990 Apr;9(4):1171–1176. doi: 10.1002/j.1460-2075.1990.tb08224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Starnes M. C., Cheng Y. C. Human immunodeficiency virus reverse transcriptase-associated RNase H activity. J Biol Chem. 1989 Apr 25;264(12):7073–7077. [PubMed] [Google Scholar]
  24. Verma I. M. Studies on reverse transcriptase of RNA tumor viruses III. Properties of purified Moloney murine leukemia virus DNA polymerase and associated RNase H. J Virol. 1975 Apr;15(4):843–854. doi: 10.1128/jvi.15.4.843-854.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitcomb J. M., Hughes S. H. Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol. 1992;8:275–306. doi: 10.1146/annurev.cb.08.110192.001423. [DOI] [PubMed] [Google Scholar]
  26. Whiting S. H., Champoux J. J. Strand displacement synthesis capability of Moloney murine leukemia virus reverse transcriptase. J Virol. 1994 Aug;68(8):4747–4758. doi: 10.1128/jvi.68.8.4747-4758.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. di Marzo Veronese F., Copeland T. D., DeVico A. L., Rahman R., Oroszlan S., Gallo R. C., Sarngadharan M. G. Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science. 1986 Mar 14;231(4743):1289–1291. doi: 10.1126/science.2418504. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES