Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 May 1;24(9):1688–1694. doi: 10.1093/nar/24.9.1688

The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species.

P Wincker 1, C Ravel 1, C Blaineau 1, M Pages 1, Y Jauffret 1, J P Dedet 1, P Bastien 1
PMCID: PMC145848  PMID: 8649987

Abstract

All the physical linkage groups constituting the genome of Leishmania infantum have been identified for the first time by hybridization of specific DNA probes to pulsed field gradient-separated chromosomes. The numerous co-migrating chromosomes were individualised using the distinctive size polymorphisms which occur among strains of the L. infantum/L. donovani complex as a tool. A total of 244 probes, consisting of 41 known genes, 66 expressed sequence tags (ESTs) and 137 anonymous DNA sequences, were assigned to a specific linkage group. We show that this genome comprises 36 chromosomes ranging in size from 0.35 to -3 Mb. This information enabled us to compare the genome structure of L. infantum with those of the three other main Leishmania species that infect man in the Old World, L. major, L. tropica and L. aethiopica. The linkage groups were consistently conserved in all species examined. This result is in striking contrast to the large genetic distances that separate these species and suggests that conservation of the chromosome structure may be critical for this human pathogen. Finally, the high density of markers obtained during the present study (with a mean of 1 marker/130 kb) will speed up the construction of a detailed physical map that would facilitate the genetic analysis of this parasite, for which no classical genetics is available.

Full Text

The Full Text of this article is available as a PDF (126.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. E., Hwang H. Y., Jardim A., Olafson R., Ullman B. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase from Leishmania donovani. Mol Biochem Parasitol. 1995 Jul;73(1-2):133–143. doi: 10.1016/0166-6851(94)00105-v. [DOI] [PubMed] [Google Scholar]
  2. Allen T., Hwang H. Y., Wilson K., Hanson S., Jardim A., Ullman B. Cloning and expression of the adenine phosphoribosyltransferase gene from Leishmania donovani. Mol Biochem Parasitol. 1995 Oct;74(1):99–103. doi: 10.1016/0166-6851(95)02475-1. [DOI] [PubMed] [Google Scholar]
  3. Bard E., Janeczko R. Sequence and genomic locus of a Leishmania protein homologous to rat ribosomal protein S8. Nucleic Acids Res. 1992 Jan 25;20(2):369–369. doi: 10.1093/nar/20.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bart G., Coombs G. H., Mottram J. C. Isolation of lmcpc, a gene encoding a Leishmania mexicana cathepsin-B-like cysteine proteinase. Mol Biochem Parasitol. 1995 Jul;73(1-2):271–274. doi: 10.1016/0166-6851(95)00113-f. [DOI] [PubMed] [Google Scholar]
  5. Bastien P., Blaineau C., Pages M. Leishmania: sex, lies and karyotype. Parasitol Today. 1992 May;8(5):174–177. doi: 10.1016/0169-4758(92)90016-u. [DOI] [PubMed] [Google Scholar]
  6. Bastien P., Blaineau C., Pagès M. Molecular karyotype analysis in Leishmania. Subcell Biochem. 1992;18:131–187. doi: 10.1007/978-1-4899-1651-8_5. [DOI] [PubMed] [Google Scholar]
  7. Beverley S. M., Ismach R. B., Pratt D. M. Evolution of the genus Leishmania as revealed by comparisons of nuclear DNA restriction fragment patterns. Proc Natl Acad Sci U S A. 1987 Jan;84(2):484–488. doi: 10.1073/pnas.84.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blaineau C., Bastien P., Rioux J. A., Roizès G., Pagès M. Long-range restriction maps of size-variable homologous chromosomes in Leishmania infantum. Mol Biochem Parasitol. 1991 Jun;46(2):292–302. doi: 10.1016/0166-6851(91)90053-9. [DOI] [PubMed] [Google Scholar]
  9. Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem. 1986;55:701–732. doi: 10.1146/annurev.bi.55.070186.003413. [DOI] [PubMed] [Google Scholar]
  10. Burns J. M., Jr, Shreffler W. G., Benson D. R., Ghalib H. W., Badaro R., Reed S. G. Molecular characterization of a kinesin-related antigen of Leishmania chagasi that detects specific antibody in African and American visceral leishmaniasis. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):775–779. doi: 10.1073/pnas.90.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Button L. L., McMaster W. R. Molecular cloning of the major surface antigen of leishmania. J Exp Med. 1988 Feb 1;167(2):724–729. doi: 10.1084/jem.167.2.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Campbell D. A., Kubo K., Clark C. G., Boothroyd J. C. Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA. J Mol Biol. 1987 Jul 5;196(1):113–124. doi: 10.1016/0022-2836(87)90514-6. [DOI] [PubMed] [Google Scholar]
  13. Coulson R. M., Smith D. F. Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Mol Biochem Parasitol. 1990 Apr;40(1):63–75. doi: 10.1016/0166-6851(90)90080-6. [DOI] [PubMed] [Google Scholar]
  14. Ernest I., Callens M., Opperdoes F. R., Michels P. A. Pyruvate kinase of Leishmania mexicana mexicana. Cloning and analysis of the gene, overexpression in Escherichia coli and characterization of the enzyme. Mol Biochem Parasitol. 1994 Mar;64(1):43–54. doi: 10.1016/0166-6851(94)90133-3. [DOI] [PubMed] [Google Scholar]
  15. Galindo I., Ramírez Ochoa J. L. Study of Leishmania mexicana electrokaryotype by clamped homogeneous electric field electrophoresis. Mol Biochem Parasitol. 1989 May 15;34(3):245–252. doi: 10.1016/0166-6851(89)90053-4. [DOI] [PubMed] [Google Scholar]
  16. Genske J. E., Cairns B. R., Stack S. P., Landfear S. M. Structure and regulation of histone H2B mRNAs from Leishmania enriettii. Mol Cell Biol. 1991 Jan;11(1):240–249. doi: 10.1128/mcb.11.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hanekamp T., Langer P. J. Molecular karyotype and chromosomal localization of genes encoding two major surface glycoproteins, gp63 and gp46/M2, hsp70, and beta-tubulin in cloned strains of several Leishmania species. Mol Biochem Parasitol. 1991 Sep;48(1):27–37. doi: 10.1016/0166-6851(91)90161-x. [DOI] [PubMed] [Google Scholar]
  18. Hanson S., Adelman J., Ullman B. Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani. J Biol Chem. 1992 Feb 5;267(4):2350–2359. [PubMed] [Google Scholar]
  19. Henderson D. M., Hanson S., Allen T., Wilson K., Coulter-Karis D. E., Greenberg M. L., Hershfield M. S., Ullman B. Cloning of the gene encoding Leishmania donovani S-adenosylhomocysteine hydrolase, a potential target for antiparasitic chemotherapy. Mol Biochem Parasitol. 1992 Jul;53(1-2):169–183. doi: 10.1016/0166-6851(92)90019-g. [DOI] [PubMed] [Google Scholar]
  20. Henderson D. M., Sifri C. D., Rodgers M., Wirth D. F., Hendrickson N., Ullman B. Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Mol Cell Biol. 1992 Jun;12(6):2855–2865. doi: 10.1128/mcb.12.6.2855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hendrickson N., Allen T., Ullman B. Molecular characterization of phosphoribosylpyrophosphate synthetase from Leishmania donovani. Mol Biochem Parasitol. 1993 May;59(1):15–27. doi: 10.1016/0166-6851(93)90003-g. [DOI] [PubMed] [Google Scholar]
  22. Huang P. L., Roberts B. E., Pratt D. M., David J. R., Miller J. S. Structure and arrangement of the beta-tubulin genes of Leishmania tropica. Mol Cell Biol. 1984 Jul;4(7):1372–1383. doi: 10.1128/mcb.4.7.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hübel A., Brandau S., Dresel A., Clos J. A member of the ClpB family of stress proteins is expressed during heat shock in Leishmania spp. Mol Biochem Parasitol. 1995 Mar;70(1-2):107–118. doi: 10.1016/0166-6851(95)00012-p. [DOI] [PubMed] [Google Scholar]
  24. Iovannisci D. M., Beverley S. M. Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array. Mol Biochem Parasitol. 1989 May 1;34(2):177–188. doi: 10.1016/0166-6851(89)90009-1. [DOI] [PubMed] [Google Scholar]
  25. Janse C. J., Carlton J. M., Walliker D., Waters A. P. Conserved location of genes on polymorphic chromosomes of four species of malaria parasites. Mol Biochem Parasitol. 1994 Dec;68(2):285–296. doi: 10.1016/0166-6851(94)90173-2. [DOI] [PubMed] [Google Scholar]
  26. Kapler G. M., Zhang K., Beverley S. M. Sequence and S1 nuclease mapping of the 5' region of the dihydrofolate reductase-thymidylate synthase gene of Leishmania major. Nucleic Acids Res. 1987 Apr 24;15(8):3369–3383. doi: 10.1093/nar/15.8.3369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lanzer M., Fischer K., Le Blancq S. M. Parasitism and chromosome dynamics in protozoan parasites: is there a connection? Mol Biochem Parasitol. 1995 Mar;70(1-2):1–8. doi: 10.1016/0166-6851(95)00021-r. [DOI] [PubMed] [Google Scholar]
  28. Liu X., Chang K. P. The 63-kilobase circular amplicon of tunicamycin-resistant Leishmania amazonensis contains a functional N-acetylglucosamine-1-phosphate transferase gene that can be used as a dominant selectable marker in transfection. Mol Cell Biol. 1992 Sep;12(9):4112–4122. doi: 10.1128/mcb.12.9.4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Livak K. J., Freund R., Schweber M., Wensink P. C., Meselson M. Sequence organization and transcription at two heat shock loci in Drosophila. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5613–5617. doi: 10.1073/pnas.75.11.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mottram J. C., Kinnaird J. H., Shiels B. R., Tait A., Barry J. D. A novel CDC2-related protein kinase from Leishmania mexicana, LmmCRK1, is post-translationally regulated during the life cycle. J Biol Chem. 1993 Oct 5;268(28):21044–21052. [PubMed] [Google Scholar]
  31. Mottram J. C., Robertson C. D., Coombs G. H., Barry J. D. A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Mol Microbiol. 1992 Jul;6(14):1925–1932. doi: 10.1111/j.1365-2958.1992.tb01365.x. [DOI] [PubMed] [Google Scholar]
  32. Mottram J. C., Smith G. A family of trypanosome cdc2-related protein kinases. Gene. 1995 Aug 30;162(1):147–152. doi: 10.1016/0378-1119(95)00350-f. [DOI] [PubMed] [Google Scholar]
  33. Murray P. J., Spithill T. W. Variants of a Leishmania surface antigen derived from a multigenic family. J Biol Chem. 1991 Dec 25;266(36):24477–24484. [PubMed] [Google Scholar]
  34. Ouellette M., Fase-Fowler F., Borst P. The amplified H circle of methotrexate-resistant leishmania tarentolae contains a novel P-glycoprotein gene. EMBO J. 1990 Apr;9(4):1027–1033. doi: 10.1002/j.1460-2075.1990.tb08206.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pagès M., Bastien P., Veas F., Rossi V., Bellis M., Wincker P., Rioux J. A., Roizès G. Chromosome size and number polymorphisms in Leishmania infantum suggest amplification/deletion and possible genetic exchange. Mol Biochem Parasitol. 1989 Sep;36(2):161–168. doi: 10.1016/0166-6851(89)90188-6. [DOI] [PubMed] [Google Scholar]
  36. Ravel C., Macari F., Bastien P., Pagès M., Blaineau C. Conservation among Old World Leishmania species of six physical linkage groups defined in Leishmania infantum small chromosomes. Mol Biochem Parasitol. 1995 Jan;69(1):1–8. doi: 10.1016/0166-6851(94)00166-k. [DOI] [PubMed] [Google Scholar]
  37. Ravel C., Wincker P., Bastien P., Blaineau C., Pagès M. A polymorphic minisatellite sequence in the subtelomeric regions of chromosomes I and V in Leishmania infantum. Mol Biochem Parasitol. 1995 Oct;74(1):31–41. doi: 10.1016/0166-6851(95)02480-8. [DOI] [PubMed] [Google Scholar]
  38. Rioux J. A., Lanotte G., Serres E., Pratlong F., Bastien P., Perieres J. Taxonomy of Leishmania. Use of isoenzymes. Suggestions for a new classification. Ann Parasitol Hum Comp. 1990;65(3):111–125. doi: 10.1051/parasite/1990653111. [DOI] [PubMed] [Google Scholar]
  39. Scholler J. K., Reed S. G., Stuart K. Molecular karyotype of species and subspecies of Leishmania. Mol Biochem Parasitol. 1986 Sep;20(3):279–293. doi: 10.1016/0166-6851(86)90108-8. [DOI] [PubMed] [Google Scholar]
  40. Searle S., McCrossan M. V., Smith D. F. Expression of a mitochondrial stress protein in the protozoan parasite Leishmania major. J Cell Sci. 1993 Apr;104(Pt 4):1091–1100. doi: 10.1242/jcs.104.4.1091. [DOI] [PubMed] [Google Scholar]
  41. Searle S., Smith D. F. Leishmania major: characterisation and expression of a cytoplasmic stress-related protein. Exp Parasitol. 1993 Aug;77(1):43–52. doi: 10.1006/expr.1993.1059. [DOI] [PubMed] [Google Scholar]
  42. Shapira M., Pinelli E. Heat-shock protein 83 of Leishmania mexicana amazonensis is an abundant cytoplasmic protein with a tandemly repeated genomic arrangement. Eur J Biochem. 1989 Nov 6;185(2):231–236. doi: 10.1111/j.1432-1033.1989.tb15107.x. [DOI] [PubMed] [Google Scholar]
  43. Soto M., Requena J. M., Jimenez-Ruiz A., Alonso C. The mRNA coding for the nucleosomal protein H2A of Leishmania is polyadenylated and has stem-loops at the 3' end. Nucleic Acids Res. 1991 Aug 25;19(16):4554–4554. doi: 10.1093/nar/19.16.4554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Soto M., Requena J. M., Moreira D., Alonso C. Assignment of genes to Leishmania infantum chromosomes: karyotype and ploidy. FEMS Microbiol Lett. 1995 Jun 1;129(1):27–32. doi: 10.1016/0378-1097(95)00129-S. [DOI] [PubMed] [Google Scholar]
  45. Souza A. E., Waugh S., Coombs G. H., Mottram J. C. Characterization of a multi-copy gene for a major stage-specific cysteine proteinase of Leishmania mexicana. FEBS Lett. 1992 Oct 19;311(2):124–127. doi: 10.1016/0014-5793(92)81382-v. [DOI] [PubMed] [Google Scholar]
  46. Spithill T. W., Samaras N. Genomic organization, chromosomal location and transcription of dispersed and repeated tubulin genes in Leishmania major. Mol Biochem Parasitol. 1987 May;24(1):23–37. doi: 10.1016/0166-6851(87)90112-5. [DOI] [PubMed] [Google Scholar]
  47. Tripp C. A., Wisdom W. A., Myler P. J., Stuart K. D. A multicopy, extrachromosomal DNA in Leishmania infantum contains two inverted repeats of the 27.5-kilobase LD1 sequence and encodes numerous transcripts. Mol Biochem Parasitol. 1992 Oct;55(1-2):39–50. doi: 10.1016/0166-6851(92)90125-4. [DOI] [PubMed] [Google Scholar]
  48. Wilson K., Collart F. R., Huberman E., Stringer J. R., Ullman B. Amplification and molecular cloning of the IMP dehydrogenase gene of Leishmania donovani. J Biol Chem. 1991 Jan 25;266(3):1665–1671. [PubMed] [Google Scholar]
  49. Wirth D. F., Slater C. Isolation and characterization of an alpha-tubulin gene from Leishmania enriettii. Mol Biochem Parasitol. 1983 Sep;9(1):83–92. doi: 10.1016/0166-6851(83)90059-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES