Abstract
When normal human spleen cells are pulsed with concanavalin A (Con A), a portion become suppressor cells which in co-culture can inhibit immunoglobulin synthesis by other normal spleen cells stimulated by pokeweed mitogen (PWM). One mechanism whereby these Con-A activated spleen cells suppress Ig synthesis appears to be by the secretion of a soluble suppressor factor(s) since supernatants of Con-A stimulated splenocytes also suppress the polyclonal synthesis of immunoglobulin by human spleen cells. In this study, we report that supernatants of Con-A activated spleen cells suppress the in vitro synthesis of IgG, IgM and IgA by human spleen cells cultured with PWM. Our results indicate that the soluble suppressor factor(s) blocks an early stage in the differentiation of B lymphocytes into plasma cells without affecting the synthesis and secretion of immunoglobulin by more mature lymphocytes which appear to be irreversibly committed toward the pathway of synthesizing immunoglobulin. In addition, we studied the ability of normal human spleen cells to synthesize polyclonal immunoglobulin when cultured with either the T-cell dependent PWM or T-cell independent mitogens lipopolysaccharide (LPS) and Nocardia. Our results demonstrate that normal human splenic mononuclear cells cultured with either Nocardia, LPS or PWM are significantly stimulated to synthesize polyclonal IgG, IgM and IgA. Furthermore, supernatants of Con-A activated human spleen cells suppressed the polyclonal synthesis of these three antibody classes by human spleen cells responding to either T-cell dependent or independent mitogens.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brochier J., Bona C., Ciorbaru R., Revillard J. P., Chedid L. A human T-independent B lymphocyte mitogen extracted from Nocardia opaca. J Immunol. 1976 Nov;117(5 Pt 1):1434–1439. [PubMed] [Google Scholar]
- Dutton R. W. Inhibitory and stimulatory effects of concanavalin A on the response of mouse spleen cell suspensions to antigen. I. Characterization of the inhibitory cell activity. J Exp Med. 1972 Dec 1;136(6):1445–1460. doi: 10.1084/jem.136.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekstedt R. D., Waterfield J. D., Nespoli L., Möller G. Mechanism of action of suppressor cells. In vivo concanavalin-A-activated suppressor cells do not directly affect B cells. Scand J Immunol. 1977;6(3):247–253. doi: 10.1111/j.1365-3083.1977.tb00391.x. [DOI] [PubMed] [Google Scholar]
- Fineman S. M., Mudawwar F. B., Geha R. S. Characteristics and mechanisms of action of the concanavalin A-activated suppressor cell in man. Cell Immunol. 1979 Jun;45(1):120–132. doi: 10.1016/0008-8749(79)90367-8. [DOI] [PubMed] [Google Scholar]
- Finkelman F. D., Lipsky P. E. Immunoglobulin secretion by human splenic lymphocytes in vitro: the effects of antibodies to IgM and IgD. J Immunol. 1978 May;120(5):1465–1472. [PubMed] [Google Scholar]
- Gerber N. L., Hardin J. A., Chused T. M., Steinberg A. D. Loss with age in NZB-W mice of thymic suppressor cells in the graft-vs-host reaction. J Immunol. 1974 Nov;113(5):1618–1625. [PubMed] [Google Scholar]
- Greaves M., Janossy G., Doenhoff M. Selective triggering of human T and B lymphocytes in vitro by polyclonal mitogens. J Exp Med. 1974 Jul 1;140(1):1–18. doi: 10.1084/jem.140.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta S., Schwartz S. A., Good R. A. Subpopulations of human T lymphocytes. VII. Cellular basis of concanavalin A-induced T cell-mediated suppression of immunoglobulin production by B lymphocytes from normal humans. Cell Immunol. 1979 May;44(2):242–251. doi: 10.1016/0008-8749(79)90002-9. [DOI] [PubMed] [Google Scholar]
- Haynes B. F., Fauci A. S. Activation of human B lymphocytes. V. Kinetics and mechanisms of suppression of plaque-forming cell responses by concanavalin A-generated suppressor cells. J Immunol. 1978 Mar;120(3):700–708. [PubMed] [Google Scholar]
- Ivanyi L., Lehner T. Stimulation of human lymphocytes by B-cell mitogens. Clin Exp Immunol. 1974 Nov;18(3):347–356. [PMC free article] [PubMed] [Google Scholar]
- Krakauer R. S., Clough J. D., Frank S., Sundeen J. T. Suppressor cell function defect in idiopathic systemic lupus erythematosus. Clin Immunol Immunopathol. 1979 Nov;14(3):327–333. doi: 10.1016/0090-1229(79)90158-2. [DOI] [PubMed] [Google Scholar]
- Markham R. B., Reed N. D., Stashak P. W., Prescott B., Amsbaugh D. F., Baker P. J. Effect of concanavalin A on lymphocyte interactions involved in the antibody response to type III pneumococcal polysaccharide. II. Ability of suppressor T cells to act on both B cells and amplified T cells to limit the magnitude of the antibody response. J Immunol. 1977 Sep;119(3):1163–1168. [PubMed] [Google Scholar]
- Rich R. R., Pierce C. W. Biological expressions of lymphocyte activation. 3. Suppression of plaque-forming cell responses in vitro by supernatant fluids from concanavalin A-activated spleen cell cultures. J Immunol. 1974 Apr;112(4):1360–1368. [PubMed] [Google Scholar]
- Rich R. R., Pierce C. W. Biological expressions of lymphocyte activation. II. Generation of a population of thymus-derived suppressor lymphocytes. J Exp Med. 1973 Mar 1;137(3):649–659. doi: 10.1084/jem.137.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ringdén O., Rynnel-Dagö B., Waterfield E. M., Möller E., Möller G. Polyclonal antibody secretion in human lymphocytes induced by killed staphylococcal bacteria and by lipopolysaccharide. Scand J Immunol. 1977;6(11):1159–1169. doi: 10.1111/j.1365-3083.1977.tb00355.x. [DOI] [PubMed] [Google Scholar]
- Schwartz S. A., Shou L., Good R. A., Choi Y. S. Suppression of immunoglobulin synthesis and secretion by peripheral blood lymphocytes from normal donors. Proc Natl Acad Sci U S A. 1977 May;74(5):2099–2103. doi: 10.1073/pnas.74.5.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shou L., Schwartz S. A., Good R. A. Suppressor cell activity after concanavalin A treatment of lymphocytes from normal donors. J Exp Med. 1976 May 1;143(5):1100–1110. doi: 10.1084/jem.143.5.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada T., Taniguchi M., Takemori T. Properties of primed suppressor T cells and their products. Transplant Rev. 1975;26:106–129. doi: 10.1111/j.1600-065x.1975.tb00177.x. [DOI] [PubMed] [Google Scholar]
- Tadakuma T., Pierce C. W. Mode of action of a soluble immune response suppressor (SIRS) produced by concanavalin a-activated spleen cells. J Immunol. 1978 Feb;120(2):481–486. [PubMed] [Google Scholar]
- Waldmann T. A., Broder S., Krakauer R., MacDermott R. P., Durm M., Goldman C., Meade B. The role of suppressor cells in the pathogenesis of common variable hypogammaglobulinemia and the immunodeficiency associated with myeloma. Fed Proc. 1976 Jul;35(9):2067–2072. [PubMed] [Google Scholar]
- Waldmann T. A., Polmar S. H., Balestra S. T., Jost M. C., Bruce R. M., Terry W. D. Immunoglobulin E in immunologic deficiency diseases. II. Serum IgE concentration of patients with acquired hypogammaglobulinemia, thymoma and hypogammaglobulinemia, myotonic dystrophy, intestinal lymphangiectasia and Wiskott-Aldrich syndrome. J Immunol. 1972 Aug;109(2):304–310. [PubMed] [Google Scholar]
