Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 May 1;24(9):1616–1624. doi: 10.1093/nar/24.9.1616

On the use of double FLP recognition targets (FRTs) in the LTR of retroviruses for the construction of high producer cell lines.

S Karreman 1, H Hauser 1, C Karreman 1
PMCID: PMC145857  PMID: 8649977

Abstract

A pilot experiment for the construction of a hamster derived, high producer cell line using site specific recombination is described. In the experiment chromosomal loci with intrinsic high expression characteristics were sought via infection with a retroviral construct, containing double FRT sites and subsequent screening for overproduction of an encoded markergene. These sites were then targeted with a second vector, that recombined via the FLP/FRT system from Saccharomyces cerevisiae yielding cells that had the second construct at exactly the same position as the first. By using retroviral vectors with double and single FRT sites, respectively, stable clones can be created that can no longer be excised with FLP.

Full Text

The Full Text of this article is available as a PDF (184.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger J., Hauber J., Hauber R., Geiger R., Cullen B. R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene. 1988 Jun 15;66(1):1–10. doi: 10.1016/0378-1119(88)90219-3. [DOI] [PubMed] [Google Scholar]
  2. Dirks W., Wirth M., Hauser H. Dicistronic transcription units for gene expression in mammalian cells. Gene. 1993 Jun 30;128(2):247–249. doi: 10.1016/0378-1119(93)90569-o. [DOI] [PubMed] [Google Scholar]
  3. Grabenhorst E., Hoffmann A., Nimtz M., Zettlmeissl G., Conradt H. S. Construction of stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(beta 1-4)GlcNAc-R alpha 2,6-sialyltransferase alpha 2,6-linked NeuAc is preferentially attached to the Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)-branch of diantennary oligosaccharides from secreted recombinant beta-trace protein. Eur J Biochem. 1995 Sep 15;232(3):718–725. doi: 10.1111/j.1432-1033.1995.718zz.x. [DOI] [PubMed] [Google Scholar]
  4. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  5. Jainchill J. L., Aaronson S. A., Todaro G. J. Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J Virol. 1969 Nov;4(5):549–553. doi: 10.1128/jvi.4.5.549-553.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirchhoff S., Köster M., Wirth M., Schaper F., Gossen M., Bujard H., Hauser H. Identification of mammalian cell clones exhibiting highly regulated expression from inducible promoters. Trends Genet. 1995 Jun;11(6):219–220. doi: 10.1016/s0168-9525(00)89053-8. [DOI] [PubMed] [Google Scholar]
  7. Lupton S. D., Brunton L. L., Kalberg V. A., Overell R. W. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol. 1991 Jun;11(6):3374–3378. doi: 10.1128/mcb.11.6.3374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  9. Marsh J. L., Erfle M., Wykes E. J. The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene. 1984 Dec;32(3):481–485. doi: 10.1016/0378-1119(84)90022-2. [DOI] [PubMed] [Google Scholar]
  10. O'Gorman S., Fox D. T., Wahl G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991 Mar 15;251(4999):1351–1355. doi: 10.1126/science.1900642. [DOI] [PubMed] [Google Scholar]
  11. Racher A. J., Moreira J. L., Alves P. M., Wirth M., Weidle U. H., Hauser H., Carrondo M. J., Griffiths J. B. Expression of recombinant antibody and secreted alkaline phosphatase in mammalian cells. Influence of cell line and culture system upon production kinetics. Appl Microbiol Biotechnol. 1994 Feb;40(6):851–856. doi: 10.1007/BF00173987. [DOI] [PubMed] [Google Scholar]
  12. Schlake T., Bode J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry. 1994 Nov 1;33(43):12746–12751. doi: 10.1021/bi00209a003. [DOI] [PubMed] [Google Scholar]
  13. Silver J., Keerikatte V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol. 1989 May;63(5):1924–1928. doi: 10.1128/jvi.63.5.1924-1928.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thyagarajan B., Johnson B. L., Campbell C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res. 1995 Jul 25;23(14):2784–2790. doi: 10.1093/nar/23.14.2784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Triglia T., Peterson M. G., Kemp D. J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 1988 Aug 25;16(16):8186–8186. doi: 10.1093/nar/16.16.8186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zhao J. J., Pick L. Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature. 1993 Sep 30;365(6445):448–451. doi: 10.1038/365448a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES