Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 May 15;24(10):1963–1970. doi: 10.1093/nar/24.10.1963

Use of a pyrimidine nucleoside that functions as a bidentate hydrogen bond donor for the recognition of isolated or contiguous G-C base pairs by oligonucleotide-directed triplex formation.

G Xiang 1, R Bogacki 1, L W McLaughlin 1
PMCID: PMC145865  PMID: 8657581

Abstract

Synthesis of the nucleoside building block of the 6-keto derivative of 2'-deoxy-5-methylcytidine (m5oxC) as an analog of an N3-protonated cytosine derivative is described. A series of 15mer oligonucleotides containing either four or six m5oxC residues has been prepared by chemical synthesis. Complexation of the 15 residue oligonucleotides with target 25mer duplexes results in DNA triplexes containing T-A-T and m5oxC-G-C base triplets. When the m5oxC-G-C base triplets are present in sequence positions that alternate with TAT base triplets, DNA triplexes are formed with Tm values that are pH independent in the range 6.4-8.5. A 25mer DNA duplex containing a series of five contiguous G-C base pairs cannot be effectively targeted with either m5C or M5oxC in the third strand. In the former case charge-charge repulsion effects likely lead to destabilization of the complex, while in the latter case ineffective base stacking may be to blame. However, if the m5C and M5oxC residues are present in the third strand in alternate sequence positions, then DNA triplexes can be formed with contiguous G-C targets even at pH 8.0.

Full Text

The Full Text of this article is available as a PDF (108.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berressem R., Engels J. W. 6-Oxocytidine a novel protonated C-base analogue for stable triple helix formation. Nucleic Acids Res. 1995 Sep 11;23(17):3465–3472. doi: 10.1093/nar/23.17.3465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hampel K. J., Crosson P., Lee J. S. Polyamines favor DNA triplex formation at neutral pH. Biochemistry. 1991 May 7;30(18):4455–4459. doi: 10.1021/bi00232a012. [DOI] [PubMed] [Google Scholar]
  3. Jetter M. C., Hobbs F. W. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Biochemistry. 1993 Apr 6;32(13):3249–3254. doi: 10.1021/bi00064a006. [DOI] [PubMed] [Google Scholar]
  4. Kohwi Y., Kohwi-Shigematsu T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3781–3785. doi: 10.1073/pnas.85.11.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Krawczyk S. H., Milligan J. F., Wadwani S., Moulds C., Froehler B. C., Matteucci M. D. Oligonucleotide-mediated triple helix formation using an N3-protonated deoxycytidine analog exhibiting pH-independent binding within the physiological range. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3761–3764. doi: 10.1073/pnas.89.9.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lavelle L., Fresco J. R. UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C(+)-T)6:[d(A-G)6.d(C-T)6]; evidence for a proton switch. Nucleic Acids Res. 1995 Jul 25;23(14):2692–2705. doi: 10.1093/nar/23.14.2692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lee J. S., Woodsworth M. L., Latimer L. J., Morgan A. R. Poly(pyrimidine) . poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res. 1984 Aug 24;12(16):6603–6614. doi: 10.1093/nar/12.16.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mergny J. L., Duval-Valentin G., Nguyen C. H., Perrouault L., Faucon B., Rougée M., Montenay-Garestier T., Bisagni E., Hélène C. Triple helix-specific ligands. Science. 1992 Jun 19;256(5064):1681–1684. doi: 10.1126/science.256.5064.1681. [DOI] [PubMed] [Google Scholar]
  9. Miller P. S., Bhan P., Cushman C. D., Trapane T. L. Recognition of a guanine-cytosine base pair by 8-oxoadenine. Biochemistry. 1992 Jul 28;31(29):6788–6793. doi: 10.1021/bi00144a020. [DOI] [PubMed] [Google Scholar]
  10. Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
  11. Rajagopal P., Feigon J. NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4. Biochemistry. 1989 Sep 19;28(19):7859–7870. doi: 10.1021/bi00445a048. [DOI] [PubMed] [Google Scholar]
  12. Winkley M. W., Robins R. K. Pyrimidine nucleosides. II. The direct glycosidation of 2,6-disubstituted 4-pyrimidones. J Chem Soc Perkin 1. 1969;5:791–796. [PubMed] [Google Scholar]
  13. de los Santos C., Rosen M., Patel D. NMR studies of DNA (R+)n.(Y-)n.(Y+)n triple helices in solution: imino and amino proton markers of T.A.T and C.G.C+ base-triple formation. Biochemistry. 1989 Sep 5;28(18):7282–7289. doi: 10.1021/bi00444a021. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES