Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Dec;297:355–367. doi: 10.1113/jphysiol.1979.sp013044

Transcapillary exchange in the cat salivary gland during secretion, bradykinin infusion and after chronic duct ligation.

G E Mann, L H Smaje, D L Yudilevich
PMCID: PMC1458724  PMID: 119844

Abstract

1. Capillary permeability-surface area products for 86Rb, [51Cr]EDTA (mol. wt. 357), [57Co]cyanocobalamin (mol. wt. 1353) and [125I]insulin (approximate mol. wt. 6000) have been measured using the single-circulation, multiple-tracer dilution technique in the in situ perfused submandibular salivary gland during parasympathetic nerve stimulation, close-arterial bradykinin infusion and following chronic duct ligation. 2. In glands with a natural blood supply, permeability-surface area for 86Rb and [51Cr]EDTA increased during parasympathetic stimulation, but this was shown to be related to the concomitant increase in blood flow rather than to a change in capillary permeability or in surface area. 3. In glands perfused at constant flow, parasympathetic stimulation led to a decrease in permeability-surface area for EDTA (-19.1 +/- 5.2%, mean +/- S.E., n = 5, P less than 0.05) cyanocobalamin (-12.3 +/- 6.0, n = 12, P less than 0.05), and insulin (-15.3 +/- 4.8, n = 11, P less than 0.02). It is suggested that this may be the result of a redistribution of flow from the acinar microcirculation to a less permeable ductal vasculature. 4. Bradykinin infusion had no significant effect on permeability-surface area for EDTA and cyanocobalamin in perfused glands. 5. In perfused glands, ligation of the submandibular duct for 3--12 days reduced permeability-surface area (ml.min-1.g-1) for [51Cr]EDTA from 5.26 +/- 0.60 (mean +/- S.E., n = 9) to 4.20 +/- 0.12 (n = 4, P less than 0.30), [57Co]cyanocobalamin from 3.22 +/- 0.12 (n = 48) to 2.02 +/- 0.08 (n = 15, P less than 0.001) and [125I]insulin from 1.52 +/- 0.07 (n = 39) to 0.72 +/- 0.23 (n = 11, P less than 0.001).

Full text

PDF
355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O. A., Yudilevich D. L. Heart capillary permeability to lipid-insoluble molecules. J Physiol. 1969 May;202(1):45–58. doi: 10.1113/jphysiol.1969.sp008794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond C. E., Fraser P. A., Smaje L. H. The chronically ligated submandibular salivary duct of the rabbit as a possible model for cystic fibrosis [proceedings]. J Physiol. 1979 Apr;289:25P–25P. [PubMed] [Google Scholar]
  3. CRONE C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963 Aug;58:292–305. doi: 10.1111/j.1748-1716.1963.tb02652.x. [DOI] [PubMed] [Google Scholar]
  4. Darke A. C., Smaje L. H. The effect of chronic duct ligation on the vascular and secretory responses of the cat's submaxillary gland. J Physiol. 1973 Jan;228(2):361–376. doi: 10.1113/jphysiol.1973.sp010091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diana J. N., Colantino R., Haddy F. J. Transcapillary fluid movement during vasopressin and bradykinin infusion. Am J Physiol. 1967 Feb;212(2):456–465. doi: 10.1152/ajplegacy.1967.212.2.456. [DOI] [PubMed] [Google Scholar]
  6. Ferreira S. H., Smaje L. H. Bradykinin and functional vasodilatation in the salivary gland. Br J Pharmacol. 1976 Oct;58(2):201–209. doi: 10.1111/j.1476-5381.1976.tb10397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fraser P. A., Smaje L. H. Sodium transport in the isolated main duct of the rabbit salivary gland following chronic ligation [proceedings]. J Physiol. 1978 Dec;285:24P–25P. [PubMed] [Google Scholar]
  8. Fraser P. A., Smaje L. H. The organization of the salivary gland microcirculation. J Physiol. 1977 Oct;272(1):121–136. doi: 10.1113/jphysiol.1977.sp012037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gautvik K. Studies on kinin formation in functional vasodilatation of the submandibular salivary gland in cats. Acta Physiol Scand. 1970 Jun;79(2):174–187. doi: 10.1111/j.1748-1716.1970.tb04718.x. [DOI] [PubMed] [Google Scholar]
  10. Harrison J. D., Garrett J. R. The effects of ductal ligation on the parenchyma of salivary glands of cat studied by enzyme histochemical methods. Histochem J. 1976 Jan;8(1):35–44. doi: 10.1007/BF01004003. [DOI] [PubMed] [Google Scholar]
  11. Hojima Y., Maranda B., Moriwaki C., Schachter M. Direct evidence for the location of kallikrein in the striated ducts of the cat's submandibular gland by the use of specific antibody. J Physiol. 1977 Jul;268(3):793–801. doi: 10.1113/jphysiol.1977.sp011882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Luft J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966 Nov-Dec;25(6):1773–1783. [PubMed] [Google Scholar]
  13. MARTIN P., YUDILEVICH D. A THEORY FOR THE QUANTIFICATION OF TRANSCAPILLARY EXCHANGE BY TRACER-DILUTION CURVES. Am J Physiol. 1964 Jul;207:162–168. doi: 10.1152/ajplegacy.1964.207.1.162. [DOI] [PubMed] [Google Scholar]
  14. MEIER P., ZIERLER K. L. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954 Jun;6(12):731–744. doi: 10.1152/jappl.1954.6.12.731. [DOI] [PubMed] [Google Scholar]
  15. Majno G., Gilmore V., Leventhal M. On the mechanism of vascular leakage caused by histaminetype mediators. A microscopic study in vivo. Circ Res. 1967 Dec;21(6):833–847. doi: 10.1161/01.res.21.6.833. [DOI] [PubMed] [Google Scholar]
  16. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mann G. E., Smaje L. H., Yudilevich D. L. Microvascular exchange in the cat salivary gland using single passage multiple tracer dilution. Bibl Anat. 1977;(15 Pt 1):469–471. [PubMed] [Google Scholar]
  18. Mann G. E., Smaje L. H., Yudilevich D. L. Permeability of the fenestrated capillaries in the cat submandibular gland to lipid-insoluble molecules. J Physiol. 1979 Dec;297(0):335–354. doi: 10.1113/jphysiol.1979.sp013043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mann G. E., Smaje L. H., Yudilevich D. L. Proceedings: Vascular permeability in the perfused cat salivary gland using single passage multiple tracer dilution. J Physiol. 1976 Jun;258(2):58P–59P. [PubMed] [Google Scholar]
  20. RENKIN E. M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959 Dec;197:1205–1210. doi: 10.1152/ajplegacy.1959.197.6.1205. [DOI] [PubMed] [Google Scholar]
  21. Renkin E. M., Carter R. D., Joyner W. L. Mechanism of the sustained action of histamine and bradykinin on transport of large molecules across capillary walls in the dog paw. Microvasc Res. 1974 Jan;7(1):49–60. doi: 10.1016/0026-2862(74)90036-3. [DOI] [PubMed] [Google Scholar]
  22. STANDISH S. M., SHAFER W. G. Serial histologic effects of rat submaxillary and sublingual salivary gland duct and blood vessel ligation. J Dent Res. 1957 Dec;36(6):866–879. doi: 10.1177/00220345570360060801. [DOI] [PubMed] [Google Scholar]
  23. Schachter M., Beilenson S. Kallikrein and vasodilation in the submaxillary gland. Gastroenterology. 1967 Feb;52(2):401–405. [PubMed] [Google Scholar]
  24. Svensjö E., Persson C. G., Rutili G. Inhibition of bradykinin induced macromolecular leakage from post-capillary venules by a beta2-adrenoreceptor stimulant, terbutaline. Acta Physiol Scand. 1977 Dec;101(4):504–506. doi: 10.1111/j.1748-1716.1977.tb06038.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES