Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 May 15;24(10):1809–1815. doi: 10.1093/nar/24.10.1809

The viral thymidine kinase gene as a tool for the study of mutagenesis in Trypanosoma brucei.

J Valdés 1, M C Taylor 1, M A Cross 1, M J Ligtenberg 1, G Rudenko 1, P Borst 1
PMCID: PMC145877  PMID: 8657559

Abstract

We have tested the use of thymidine kinase as a negative selection system for Trypanosoma brucei. To this end we have targeted a construct containing a Herpes simplex virus thymidine kinase (TK) gene into the ribosomal DNA array of procyclic T. brucei. This resulted in TK activity 30-50-fold above background and in susceptibility to the nucleoside analogues ganciclovir, ethyl-deoxyuridine and 1-[2-deoxy,2-fluoro-8-D-arabinofuranosyl]-5-iodouracil, all of which have no effect on wild-type trypanosomes. TK+ trypanosomes, however, reverted to a ganciclovir resistant phenotype at a rate of 10(-6) per cell-generation. A similar reversion rate was observed using the Varicella-zoster virus TK gene. Loss of TK activity was not due to detectable DNA rearrangements or a decrease in TK mRNA. Sequence analysis of the revertant genes demonstrated, however, the occurrence of point mutations and frameshifts. One revertant line had a mutation in the thymidine binding site leading to the substitution of a conserved arginine by a glycine. Other mutations included single base insertion, single base deletion and the introduction of a premature termination codon by point mutation.

Full Text

The Full Text of this article is available as a PDF (127.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  2. Carruthers V. B., van der Ploeg L. H., Cross G. A. DNA-mediated transformation of bloodstream-form Trypanosoma brucei. Nucleic Acids Res. 1993 May 25;21(10):2537–2538. doi: 10.1093/nar/21.10.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chello P. L., Jaffe J. J. Comparative properties of trypanosomal and mammalian thymidine kinases. Comp Biochem Physiol B. 1972 Nov 15;43(3):543–562. doi: 10.1016/0305-0491(72)90138-1. [DOI] [PubMed] [Google Scholar]
  4. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  5. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jefferies D., Tebabi P., Le Ray D., Pays E. The ble resistance gene as a new selectable marker for Trypanosoma brucei: fly transmission of stable procyclic transformants to produce antibiotic resistant bloodstream forms. Nucleic Acids Res. 1993 Jan 25;21(2):191–195. doi: 10.1093/nar/21.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kunz B. A., Kohalmi S. E. Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet. 1991;25:339–359. doi: 10.1146/annurev.ge.25.120191.002011. [DOI] [PubMed] [Google Scholar]
  8. LeBowitz J. H., Cruz A., Beverley S. M. Thymidine kinase as a negative selectable marker in Leishmania major. Mol Biochem Parasitol. 1992 Apr;51(2):321–325. doi: 10.1016/0166-6851(92)90082-u. [DOI] [PubMed] [Google Scholar]
  9. Lee M. G., Van der Ploeg L. H. Homologous recombination and stable transfection in the parasitic protozoan Trypanosoma brucei. Science. 1990 Dec 14;250(4987):1583–1587. doi: 10.1126/science.2177225. [DOI] [PubMed] [Google Scholar]
  10. Ligtenberg M. J., Bitter W., Kieft R., Steverding D., Janssen H., Calafat J., Borst P. Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J. 1994 Jun 1;13(11):2565–2573. doi: 10.1002/j.1460-2075.1994.tb06546.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lu Y., Hall T., Gay L. S., Donelson J. E. Point mutations are associated with a gene duplication leading to the bloodstream reexpression of a trypanosome metacyclic VSG. Cell. 1993 Feb 12;72(3):397–406. doi: 10.1016/0092-8674(93)90116-8. [DOI] [PubMed] [Google Scholar]
  12. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Machida H. Comparison of susceptibilities of varicella-zoster virus and herpes simplex viruses to nucleoside analogs. Antimicrob Agents Chemother. 1986 Mar;29(3):524–526. doi: 10.1128/aac.29.3.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roberts G. B., Fyfe J. A., Gaillard R. K., Short S. A. Mutant varicella-zoster virus thymidine kinase: correlation of clinical resistance and enzyme impairment. J Virol. 1991 Dec;65(12):6407–6413. doi: 10.1128/jvi.65.12.6407-6413.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rudenko G., Chung H. M., Pham V. P., Van der Ploeg L. H. RNA polymerase I can mediate expression of CAT and neo protein-coding genes in Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3387–3397. doi: 10.1002/j.1460-2075.1991.tb04903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sawyer M. H., Inchauspe G., Biron K. K., Waters D. J., Straus S. E., Ostrove J. M. Molecular analysis of the pyrimidine deoxyribonucleoside kinase gene of wild-type and acyclovir-resistant strains of varicella-zoster virus. J Gen Virol. 1988 Oct;69(Pt 10):2585–2593. doi: 10.1099/0022-1317-69-10-2585. [DOI] [PubMed] [Google Scholar]
  17. Wagner M. J., Sharp J. A., Summers W. C. Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1441–1445. doi: 10.1073/pnas.78.3.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. White T. C., Rudenko G., Borst P. Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Res. 1986 Dec 9;14(23):9471–9489. doi: 10.1093/nar/14.23.9471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zabarovsky E. R., Winberg G. High efficiency electroporation of ligated DNA into bacteria. Nucleic Acids Res. 1990 Oct 11;18(19):5912–5912. doi: 10.1093/nar/18.19.5912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zomerdijk J. C., Kieft R., Borst P. Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei. Nature. 1991 Oct 24;353(6346):772–775. doi: 10.1038/353772a0. [DOI] [PubMed] [Google Scholar]
  21. Zomerdijk J. C., Ouellette M., ten Asbroek A. L., Kieft R., Bommer A. M., Clayton C. E., Borst P. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J. 1990 Sep;9(9):2791–2801. doi: 10.1002/j.1460-2075.1990.tb07467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ten Asbroek A. L., Mol C. A., Kieft R., Borst P. Stable transformation of Trypanosoma brucei. Mol Biochem Parasitol. 1993 May;59(1):133–142. doi: 10.1016/0166-6851(93)90014-o. [DOI] [PubMed] [Google Scholar]
  23. ten Asbroek A. L., Ouellette M., Borst P. Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei. Nature. 1990 Nov 8;348(6297):174–175. doi: 10.1038/348174a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES