Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jun 1;24(11):2059–2066. doi: 10.1093/nar/24.11.2059

An essential domain in Saccharomyces cerevisiae U14 snoRNA is absent in vertebrates, but conserved in other yeasts.

D A Samarsky 1, G S Schneider 1, M J Fournier 1
PMCID: PMC145897  PMID: 8668536

Abstract

U14 is a small nucleolar RNA (snoRNA) required for early cleavages of eukaryotic precursor rRNA. The U14 RNA from Saccharomyces cerevisiae is distinguished from its vertebrate homologues by the presence of a stem-loop domain that is essential for function. This element, known as the Y-domain, is located in the U14 sequence between two universal sequences that base pair with 18S rRNA. Sequence data obtained for the U14 homologues from four additional phylogenetically distinct yeasts showed the Y-domain is not unique to S.cerevisiae. Comparison of the five Y-domain sequences revealed a common stem-loop structure with a conserved loop sequence that includes eight invariant nucleotides. Conservation of these features suggests that the Y-domain is a recognition signal for an essential interaction. Several plant U14 RNAs were found to contain similar structures, though with an unrelated consensus sequence in the loop portion. The U14 gene from the most distantly related yeast, Schizosaccharomyces pombe, was found to be active in S.cerevisiae, showing that Y-domain function is conserved and that U14 function can be provided by variants in which the essential elements are embedded in dissimilar flanking sequences. This last result suggests that U14 function may be determined solely by the essential elements.

Full Text

The Full Text of this article is available as a PDF (138.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachellerie J. P., Michot B., Nicoloso M., Balakin A., Ni J., Fournier M. J. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci. 1995 Jul;20(7):261–264. doi: 10.1016/s0968-0004(00)89039-8. [DOI] [PubMed] [Google Scholar]
  2. Balakin A. G., Lempicki R. A., Huang G. M., Fournier M. J. Saccharomyces cerevisiae U14 small nuclear RNA has little secondary structure and appears to be produced by post-transcriptional processing. J Biol Chem. 1994 Jan 7;269(1):739–746. [PubMed] [Google Scholar]
  3. Balakin A. G., Schneider G. S., Corbett M. S., Ni J., Fournier M. J. SnR31, snR32, and snR33: three novel, non-essential snRNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Nov 25;21(23):5391–5397. doi: 10.1093/nar/21.23.5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baserga S. J., Yang X. D., Steitz J. A. An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. EMBO J. 1991 Sep;10(9):2645–2651. doi: 10.1002/j.1460-2075.1991.tb07807.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  6. Hartshorne T., Agabian N. A common core structure for U3 small nucleolar RNAs. Nucleic Acids Res. 1994 Aug 25;22(16):3354–3364. doi: 10.1093/nar/22.16.3354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang G. M., Jarmolowski A., Struck J. C., Fournier M. J. Accumulation of U14 small nuclear RNA in Saccharomyces cerevisiae requires box C, box D, and a 5', 3' terminal stem. Mol Cell Biol. 1992 Oct;12(10):4456–4463. doi: 10.1128/mcb.12.10.4456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jarmolowski A., Zagorski J., Li H. V., Fournier M. J. Identification of essential elements in U14 RNA of Saccharomyces cerevisiae. EMBO J. 1990 Dec;9(13):4503–4509. doi: 10.1002/j.1460-2075.1990.tb07901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Köhrer K., Domdey H. Preparation of high molecular weight RNA. Methods Enzymol. 1991;194:398–405. doi: 10.1016/0076-6879(91)94030-g. [DOI] [PubMed] [Google Scholar]
  10. Leader D. J., Sanders J. F., Waugh R., Shaw P., Brown J. W. Molecular characterisation of plant U14 small nucleolar RNA genes: closely linked genes are transcribed as polycistronic U14 transcripts. Nucleic Acids Res. 1994 Dec 11;22(24):5196–5203. doi: 10.1093/nar/22.24.5196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li D., Fournier M. J. U14 function in Saccharomyces cerevisiae can be provided by large deletion variants of yeast U14 and hybrid mouse-yeast U14 RNAs. EMBO J. 1992 Feb;11(2):683–689. doi: 10.1002/j.1460-2075.1992.tb05100.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li H. D., Zagorski J., Fournier M. J. Depletion of U14 small nuclear RNA (snR128) disrupts production of 18S rRNA in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Mar;10(3):1145–1152. doi: 10.1128/mcb.10.3.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liang W. Q., Fournier M. J. U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev. 1995 Oct 1;9(19):2433–2443. doi: 10.1101/gad.9.19.2433. [DOI] [PubMed] [Google Scholar]
  14. Maxwell E. S., Fournier M. J. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934. doi: 10.1146/annurev.bi.64.070195.004341. [DOI] [PubMed] [Google Scholar]
  15. Peculis B. A., Steitz J. A. Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved. Genes Dev. 1994 Sep 15;8(18):2241–2255. doi: 10.1101/gad.8.18.2241. [DOI] [PubMed] [Google Scholar]
  16. Porter G. L., Brennwald P. J., Holm K. A., Wise J. A. The sequence of U3 from Schizosaccharomyces pombe suggests structural divergence of this snRNA between metazoans and unicellular eukaryotes. Nucleic Acids Res. 1988 Nov 11;16(21):10131–10152. doi: 10.1093/nar/16.21.10131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Samarsky D. A., Balakin A. G., Fournier M. J. Characterization of three new snRNAs from Saccharomyces cerevisiae: snR34, snR35 and snR36. Nucleic Acids Res. 1995 Jul 11;23(13):2548–2554. doi: 10.1093/nar/23.13.2548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sollner-Webb B. Novel intron-encoded small nucleolar RNAs. Cell. 1993 Nov 5;75(3):403–405. doi: 10.1016/0092-8674(93)90374-y. [DOI] [PubMed] [Google Scholar]
  20. Steitz J. A., Tycowski K. T. Small RNA chaperones for ribosome biogenesis. Science. 1995 Dec 8;270(5242):1626–1627. doi: 10.1126/science.270.5242.1626. [DOI] [PubMed] [Google Scholar]
  21. Terns M. P., Grimm C., Lund E., Dahlberg J. E. A common maturation pathway for small nucleolar RNAs. EMBO J. 1995 Oct 2;14(19):4860–4871. doi: 10.1002/j.1460-2075.1995.tb00167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zagorski J., Tollervey D., Fournier M. J. Characterization of an SNR gene locus in Saccharomyces cerevisiae that specifies both dispensible and essential small nuclear RNAs. Mol Cell Biol. 1988 Aug;8(8):3282–3290. doi: 10.1128/mcb.8.8.3282. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES