Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jun 1;24(11):2022–2035. doi: 10.1093/nar/24.11.2022

The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the 'NMR-window' concept].

C Glemarec 1, J Kufel 1, A Földesi 1, T Maltseva 1, A Sandström 1, L A Kirsebom 1, J Chattopadhyaya 1
PMCID: PMC145904  PMID: 8668532

Abstract

The NMR structure of a 31mer RNA constituting a functionally important domain of the catalytic RNase P RNA from Escherichia coli is reported. Severe spectral overlaps of the proton resonances in the natural 31mer RNA (1) were successfully tackled by unique spectral simplifications found in the partially-deuterated 31 mer RNA analogue (2) incorporating deuterated cytidines [C5 (>95 atom % 2H), C2' (>97 atom % 2H), C3' (>97 atom % 2H), C4' (>65 atom % 2H) and C5' (>97 atom % 2H)] [for the 'NMR-window' concept see: Földesi,A. et al. (1992) Tetrahedron, 48, 9033; Foldesi,A. et al. (1993) J. Biochem. Biophys. Methods, 26, 1; Yamakage,S.-I. et al. (1993) Nucleic Acids Res., 21, 5005; Agback,P. et al. (1994) Nucleic Acids Res., 22, 1404; Földesi,A. et al. (1995) Tetrahedron, 51, 10065; Földesi,A. et al. (1996) Nucleic Acids Res., 24, 1187-1194]. 175 resonances have been assigned out of total of 235 non-exchangeable proton resonances in (1) in an unprecedented manner in the absence of 13C and 15N labelling. 41 out of 175 assigned resonances could be accomplished with the help of the deuterated analogue (2). The two stems in 31mer RNA adopt an A-type RNA conformation and the base-stacking continues from stem I into the beginning of the loop I. Long distance cross-strand NOEs showed a structured conformation at the junction between stem I and loop I. The loop I-stem II junction is less ordered and shows structural perturbation at and around the G11 -C22 base pair.

Full Text

The Full Text of this article is available as a PDF (293.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agback P., Maltseva T. V., Yamakage S. I., Nilson F. P., Földesi A., Chattopadhyaya J. The differences in the T2 relaxation rates of the protons in the partially-deuteriated and fully protonated sugar residues in a large oligo-DNA ('NMR-window') gives complementary structural information. Nucleic Acids Res. 1994 Apr 25;22(8):1404–1412. doi: 10.1093/nar/22.8.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allain F. H., Varani G. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Nucleic Acids Res. 1995 Feb 11;23(3):341–350. doi: 10.1093/nar/23.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allain F. H., Varani G. Structure of the P1 helix from group I self-splicing introns. J Mol Biol. 1995 Jul 14;250(3):333–353. doi: 10.1006/jmbi.1995.0381. [DOI] [PubMed] [Google Scholar]
  4. Brown J. W., Pace N. R. Ribonuclease P RNA and protein subunits from bacteria. Nucleic Acids Res. 1992 Apr 11;20(7):1451–1456. doi: 10.1093/nar/20.7.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciesiolka J., Hardt W. D., Schlegl J., Erdmann V. A., Hartmann R. K. Lead-ion-induced cleavage of RNase P RNA. Eur J Biochem. 1994 Jan 15;219(1-2):49–56. doi: 10.1111/j.1432-1033.1994.tb19913.x. [DOI] [PubMed] [Google Scholar]
  6. Deutscher M. P. Ribonucleases, tRNA nucleotidyltransferase, and the 3' processing of tRNA. Prog Nucleic Acid Res Mol Biol. 1990;39:209–240. doi: 10.1016/s0079-6603(08)60628-5. [DOI] [PubMed] [Google Scholar]
  7. Földesi A., Nilson F. P., Glemarec C., Gioeli C., Chattopadhyaya J. NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window). J Biochem Biophys Methods. 1993 Feb;26(1):1–26. doi: 10.1016/0165-022x(93)90018-j. [DOI] [PubMed] [Google Scholar]
  8. Földesi A., Yamakage S. I., Nilsson F. P., Maltseva T. V., Chattopadhyaya J. The use of non-uniform deuterium labelling ['NMR-window'] to study the NMR structure of a 21mer RNA hairpin. Nucleic Acids Res. 1996 Apr 1;24(7):1187–1194. doi: 10.1093/nar/24.7.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. González C., Stec W., Reynolds M. A., James T. L. Structure and dynamics of a DNA.RNA hybrid duplex with a chiral phosphorothioate moiety: NMR and molecular dynamics with conventional and time-averaged restraints. Biochemistry. 1995 Apr 18;34(15):4969–4982. doi: 10.1021/bi00015a008. [DOI] [PubMed] [Google Scholar]
  10. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  11. Haas E. S., Morse D. P., Brown J. W., Schmidt F. J., Pace N. R. Long-range structure in ribonuclease P RNA. Science. 1991 Nov 8;254(5033):853–856. doi: 10.1126/science.1719634. [DOI] [PubMed] [Google Scholar]
  12. Kazakov S., Altman S. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9193–9197. doi: 10.1073/pnas.88.20.9193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirsebom L. A. RNase P--a 'Scarlet Pimpernel'. Mol Microbiol. 1995 Aug;17(3):411–420. doi: 10.1111/j.1365-2958.1995.mmi_17030411.x. [DOI] [PubMed] [Google Scholar]
  14. Kirsebom L. A., Svärd S. G. Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J. 1994 Oct 17;13(20):4870–4876. doi: 10.1002/j.1460-2075.1994.tb06814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kufel J., Kirsebom L. A. Cleavage site selection by M1 RNA the catalytic subunit of Escherichia coli RNase P, is influenced by pH. J Mol Biol. 1994 Dec 16;244(5):511–521. doi: 10.1006/jmbi.1994.1749. [DOI] [PubMed] [Google Scholar]
  16. Limmer S., Hofmann H. P., Ott G., Sprinzl M. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6199–6202. doi: 10.1073/pnas.90.13.6199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu H., Spielmann H. P., Ulyanov N. B., Wemmer D. E., James T. L. Interproton distance bounds from 2D NOE intensities: effect of experimental noise and peak integration errors. J Biomol NMR. 1995 Dec;6(4):390–402. doi: 10.1007/BF00197638. [DOI] [PubMed] [Google Scholar]
  18. Ludwig J. A new route to nucleoside 5'-triphosphates. Acta Biochim Biophys Acad Sci Hung. 1981;16(3-4):131–133. [PubMed] [Google Scholar]
  19. Maltseva T. V., Yamakage S. I., Agback P., Chattopadhyaya J. Direct estimation of base-pair exchange kinetics in oligo-DNA by a combination of NOESY and ROESY experiments. Nucleic Acids Res. 1993 Sep 11;21(18):4288–4295. doi: 10.1093/nar/21.18.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  21. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mujeeb A., Kerwin S. M., Kenyon G. L., James T. L. Solution structure of a conserved DNA sequence from the HIV-1 genome: restrained molecular dynamics simulation with distance and torsion angle restraints derived from two-dimensional NMR spectra. Biochemistry. 1993 Dec 14;32(49):13419–13431. doi: 10.1021/bi00212a007. [DOI] [PubMed] [Google Scholar]
  23. Neuhaus D., Wagner G., Vasák M., Kägi J. H., Wüthrich K. Systematic application of high-resolution, phase-sensitive two-dimensional 1H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins. Rabbit metallothionein-2. Eur J Biochem. 1985 Sep 2;151(2):257–273. doi: 10.1111/j.1432-1033.1985.tb09096.x. [DOI] [PubMed] [Google Scholar]
  24. Ott G., Arnold L., Limmer S. Proton NMR studies of manganese ion binding to tRNA-derived acceptor arm duplexes. Nucleic Acids Res. 1993 Dec 25;21(25):5859–5864. doi: 10.1093/nar/21.25.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rabi J. A., Fox J. J. Nucleosides. LXXIX. Facile base-catalyzed hydrogen isotope labeling at position 6 of pyrimidine nucleosides. J Am Chem Soc. 1973 Mar 7;95(5):1628–1632. doi: 10.1021/ja00786a044. [DOI] [PubMed] [Google Scholar]
  26. Schmitz U., Sethson I., Egan W. M., James T. L. Solution structure of a DNA octamer containing the Pribnow box via restrained molecular dynamics simulation with distance and torsion angle constraints derived from two-dimensional nuclear magnetic resonance spectral fitting. J Mol Biol. 1992 Sep 20;227(2):510–531. doi: 10.1016/0022-2836(92)90904-x. [DOI] [PubMed] [Google Scholar]
  27. Spielmann H. P., Dwyer T. J., Hearst J. E., Wemmer D. E. Solution structures of psoralen monoadducted and cross-linked DNA oligomers by NMR spectroscopy and restrained molecular dynamics. Biochemistry. 1995 Oct 10;34(40):12937–12953. [PubMed] [Google Scholar]
  28. Ulyanov N. B., Schmitz U., James T. L. Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: an alternative method for generating a high-resolution solution structure. J Biomol NMR. 1993 Sep;3(5):547–568. doi: 10.1007/BF00174609. [DOI] [PubMed] [Google Scholar]
  29. Varani G., Cheong C., Tinoco I., Jr Structure of an unusually stable RNA hairpin. Biochemistry. 1991 Apr 2;30(13):3280–3289. doi: 10.1021/bi00227a016. [DOI] [PubMed] [Google Scholar]
  30. Varani G., Tinoco I., Jr RNA structure and NMR spectroscopy. Q Rev Biophys. 1991 Nov;24(4):479–532. doi: 10.1017/s0033583500003875. [DOI] [PubMed] [Google Scholar]
  31. White S. A., Nilges M., Huang A., Brünger A. T., Moore P. B. NMR analysis of helix I from the 5S RNA of Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1610–1621. doi: 10.1021/bi00121a005. [DOI] [PubMed] [Google Scholar]
  32. Wyatt J. R., Chastain M., Puglisi J. D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques. 1991 Dec;11(6):764–769. [PubMed] [Google Scholar]
  33. Yamakage S. I., Maltseva T. V., Nilson F. P., Földesi A., Chattopadhyaya J. Deuteriation of sugar protons simplify NMR assignments and structure determination of large oligonucleotide by the 1H-NMR window approach. Nucleic Acids Res. 1993 Nov 11;21(22):5005–5011. doi: 10.1093/nar/21.22.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhou X. X., Welch C. J., Chattopadhyaya J. Pyridyl groups for protection of the imide functions of uridine and guanosine. Exploration of their displacement reactions for site-specific modifications of uracil and guanine bases. Acta Chem Scand B. 1986 Nov;40(10):806–816. doi: 10.3891/acta.chem.scand.40b-0806. [DOI] [PubMed] [Google Scholar]
  35. Zito K., Hüttenhofer A., Pace N. R. Lead-catalyzed cleavage of ribonuclease P RNA as a probe for integrity of tertiary structure. Nucleic Acids Res. 1993 Dec 25;21(25):5916–5920. doi: 10.1093/nar/21.25.5916. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES