Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jun 1;24(11):2044–2052. doi: 10.1093/nar/24.11.2044

Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis.

S Moran 1, R X Ren 1, C J Sheils 1, S Rumney 4th 1, E T Kool 1
PMCID: PMC145911  PMID: 8668534

Abstract

We report the use of novel non-polar nucleoside analogues as terminators of enzymatic RNA and DNA synthesis. Standard 'runoff' RNA synthesis by T7 RNA polymerase gives RNA products which have ragged ends as a result of transcription which often extends beyond the end of the template DNA strand. Similarly, the Klenow fragment of Escherichia coli DNA polymerase I tends to run past the end of the template strand during DNA synthesis. We report here that certain non-hydrogen-bonding nucleoside analogues, when placed at the downstream 5'-end of a template DNA strand, cause the polymerases to stop more abruptly at the last coding nucleotide. This results in a considerably more homogeneous oligonucleotide being produced. Three novel nucleosides are tested as potential terminators: 4-methylindole beta-deoxynucleoside (M), 1-naphthyl alpha-deoxynucleoside (N) and 1-pyrenyl alpha-deoxynucleoside (P). Comparison is made to an abasic nucleoside (phi) and to unterminated synthesis. Of these, M is found to be the most efficient at terminating transcription, and both P and M are highly effective at terminating DNA synthesis. It is also found that the ability of a nucleoside to stall synthesis when it is internally placed in the template strand is not necessarily a good predictor of terminating ability at the end of a template. Such terminator nucleosides may be useful in the preparative enzymatic synthesis of RNA and DNA, rendering purification simpler and lowering the cost of synthesis by preventing the uptake of potentially costly nucleotides into unwanted products.

Full Text

The Full Text of this article is available as a PDF (150.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992 Sep 11;20(17):4515–4523. doi: 10.1093/nar/20.17.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cazenave C., Uhlenbeck O. C. RNA template-directed RNA synthesis by T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6972–6976. doi: 10.1073/pnas.91.15.6972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark J. M., Joyce C. M., Beardsley G. P. Novel blunt-end addition reactions catalyzed by DNA polymerase I of Escherichia coli. J Mol Biol. 1987 Nov 5;198(1):123–127. doi: 10.1016/0022-2836(87)90462-1. [DOI] [PubMed] [Google Scholar]
  4. Dosanjh M. K., Galeros G., Goodman M. F., Singer B. Kinetics of extension of O6-methylguanine paired with cytosine or thymine in defined oligonucleotide sequences. Biochemistry. 1991 Dec 10;30(49):11595–11599. doi: 10.1021/bi00113a015. [DOI] [PubMed] [Google Scholar]
  5. Grosshans C. A., Cech T. R. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification. Nucleic Acids Res. 1991 Jul 25;19(14):3875–3880. doi: 10.1093/nar/19.14.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krupp G. RNA synthesis: strategies for the use of bacteriophage RNA polymerases. Gene. 1988 Dec 10;72(1-2):75–89. doi: 10.1016/0378-1119(88)90129-1. [DOI] [PubMed] [Google Scholar]
  7. Martin C. T., Muller D. K., Coleman J. E. Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry. 1988 May 31;27(11):3966–3974. doi: 10.1021/bi00411a012. [DOI] [PubMed] [Google Scholar]
  8. Menichini P., Mroczkowska M. M., Singer B. Enzyme-dependent pausing during in vitro replication of O4-methylthymine in a defined oligonucleotide sequence. Mutat Res. 1994 May 1;307(1):53–59. doi: 10.1016/0027-5107(94)90277-1. [DOI] [PubMed] [Google Scholar]
  9. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  11. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  12. Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992 Sep 11;20(17):4507–4513. doi: 10.1093/nar/20.17.4507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Romaniuk P. J., Uhlenbeck O. C. Joining of RNA molecules with RNA ligase. Methods Enzymol. 1983;100:52–59. doi: 10.1016/0076-6879(83)00045-2. [DOI] [PubMed] [Google Scholar]
  14. Shibutani S., Bodepudi V., Johnson F., Grollman A. P. Translesional synthesis on DNA templates containing 8-oxo-7,8-dihydrodeoxyadenosine. Biochemistry. 1993 May 4;32(17):4615–4621. doi: 10.1021/bi00068a019. [DOI] [PubMed] [Google Scholar]
  15. Stump W. T., Hall K. B. SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res. 1993 Nov 25;21(23):5480–5484. doi: 10.1093/nar/21.23.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takeshita M., Chang C. N., Johnson F., Will S., Grollman A. P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem. 1987 Jul 25;262(21):10171–10179. [PubMed] [Google Scholar]
  17. Zimmer D. P., Crothers D. M. NMR of enzymatically synthesized uniformly 13C15N-labeled DNA oligonucleotides. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3091–3095. doi: 10.1073/pnas.92.8.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES