Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jun 15;24(12):2347–2351. doi: 10.1093/nar/24.12.2347

Exon skipping induced by cold stress in a potato invertase gene transcript.

A S Bournay 1, P E Hedley 1, A Maddison 1, R Waugh 1, G C Machray 1
PMCID: PMC145944  PMID: 8710506

Abstract

We show that two invertase genes in potato, like most other plant invertase genes, include a very short second exon of 9 bp which encodes the central three amino acids of a motif highly conserved in invertases of diverse origin. This mini-exon is one of the smallest known in plants and pre-mRNA from these genes may be susceptible to alternative splicing, because of a potential requirement for specialized interaction with the splicing machinery to ensure correct processing for the production of a mature mRNA. No evidence of aberrant post-transcriptional processing was observed during normal invertase gene expression in potato. The fidelity of post-transcriptional processing of the pre-mRNA from one of the genes was perturbed by cold stress, resulting in the deletion of the mini-exon from some transcripts. This alternative splicing event occurred under cold stress in both leaf and stem, but was not induced by wounding. This adds an example of exon skipping and the induction of alternative processing by cold stress to the small number of transcripts which have been shown to exhibit alternative splicing in plants. The differential sensitivity of post-transcriptional processing to cold stress observed for the two transcripts examined will permit further dissection of the nucleotide sequence requirements for their accurate splicing.

Full Text

The Full Text of this article is available as a PDF (76.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARDINI C. E., LELOIR L. F., CHIRIBOGA J. The biosynthesis of sucrose. J Biol Chem. 1955 May;214(1):149–155. [PubMed] [Google Scholar]
  2. Dominski Z., Kole R. Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol. 1991 Dec;11(12):6075–6083. doi: 10.1128/mcb.11.12.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elliott K. J., Butler W. O., Dickinson C. D., Konno Y., Vedvick T. S., Fitzmaurice L., Mirkov T. E. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol. 1993 Feb;21(3):515–524. doi: 10.1007/BF00028808. [DOI] [PubMed] [Google Scholar]
  4. Goodall G. J., Filipowicz W. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 1989 Aug 11;58(3):473–483. doi: 10.1016/0092-8674(89)90428-5. [DOI] [PubMed] [Google Scholar]
  5. Grotewold E., Athma P., Peterson T. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4587–4591. doi: 10.1073/pnas.88.11.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Görlach J., Raesecke H. R., Abel G., Wehrli R., Amrhein N., Schmid J. Organ-specific differences in the ratio of alternatively spliced chorismate synthase (LeCS2) transcripts in tomato. Plant J. 1995 Sep;8(3):451–456. doi: 10.1046/j.1365-313x.1995.08030451.x. [DOI] [PubMed] [Google Scholar]
  7. Hedley P. E., Machray G. C., Davies H. V., Burch L., Waugh R. Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene. 1994 Aug 5;145(2):211–214. doi: 10.1016/0378-1119(94)90007-8. [DOI] [PubMed] [Google Scholar]
  8. Hedley P. E., Machray G. C., Davies H. V., Burch L., Waugh R. cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol. 1993 Aug;22(5):917–922. doi: 10.1007/BF00027378. [DOI] [PubMed] [Google Scholar]
  9. Hirose T., Sugita M., Sugiura M. cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing. Nucleic Acids Res. 1993 Aug 25;21(17):3981–3987. doi: 10.1093/nar/21.17.3981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huh G. S., Hynes R. O. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 1994 Jul 1;8(13):1561–1574. doi: 10.1101/gad.8.13.1561. [DOI] [PubMed] [Google Scholar]
  11. Kopriva S., Cossu R., Bauwe H. Alternative splicing results in two different transcripts for H-protein of the glycine cleavage system in the C4 species Flaveria trinervia. Plant J. 1995 Sep;8(3):435–441. doi: 10.1046/j.1365-313x.1995.08030435.x. [DOI] [PubMed] [Google Scholar]
  12. Libri D., Goux-Pelletan M., Brody E., Fiszman M. Y. Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the beta tropomyosin gene. Mol Cell Biol. 1990 Oct;10(10):5036–5046. doi: 10.1128/mcb.10.10.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorenz K., Lienhard S., Sturm A. Structural organization and differential expression of carrot beta-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isozyme. Plant Mol Biol. 1995 Apr;28(1):189–194. doi: 10.1007/BF00042049. [DOI] [PubMed] [Google Scholar]
  14. Mercier R. W., Gogarten J. P. A second cell wall acid invertase gene in Arabidopsis thaliana. Plant Physiol. 1995 Feb;107(2):659–660. doi: 10.1104/pp.107.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Obenland D. M., Simmen U., Boller T., Wiemken A. Purification and characterization of three soluble invertases from barley (Hordeum vulgare L.) leaves. Plant Physiol. 1993 Apr;101(4):1331–1339. doi: 10.1104/pp.101.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ramloch-Lorenz K., Knudsen S., Sturm A. Molecular characterization of the gene for carrot cell wall beta-fructosidase. Plant J. 1993 Sep;4(3):545–554. doi: 10.1046/j.1365-313x.1993.04030545.x. [DOI] [PubMed] [Google Scholar]
  17. Roitsch T., Bittner M., Godt D. E. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol. 1995 May;108(1):285–294. doi: 10.1104/pp.108.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rundle S. J., Zielinski R. E. Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem. 1991 Mar 15;266(8):4677–4685. [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schröder G., Brown J. W., Schröder J. Molecular analysis of resveratrol synthase. cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem. 1988 Feb 15;172(1):161–169. doi: 10.1111/j.1432-1033.1988.tb13868.x. [DOI] [PubMed] [Google Scholar]
  21. Schwebel-Dugué N., el Mtili N., Krivitzky M., Jean-Jacques I., Williams J. H., Thomas M., Kreis M., Lecharny A. Arabidopsis gene and cDNA encoding cell-wall invertase. Plant Physiol. 1994 Feb;104(2):809–810. doi: 10.1104/pp.104.2.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shanker S., Salazar R. W., Taliercio E. W., Chourey P. S. Cloning and characterization of full-length cDNA encoding cell-wall invertase from maize. Plant Physiol. 1995 Jun;108(2):873–874. doi: 10.1104/pp.108.2.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  24. Sterner D. A., Berget S. M. In vivo recognition of a vertebrate mini-exon as an exon-intron-exon unit. Mol Cell Biol. 1993 May;13(5):2677–2687. doi: 10.1128/mcb.13.5.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sturm A., Chrispeels M. J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990 Nov;2(11):1107–1119. doi: 10.1105/tpc.2.11.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Takechi H., Hosokawa N., Hirayoshi K., Nagata K. Alternative 5' splice site selection induced by heat shock. Mol Cell Biol. 1994 Jan;14(1):567–575. doi: 10.1128/mcb.14.1.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang Z. Y., Zheng F. Q., Shen G. Z., Gao J. P., Snustad D. P., Li M. G., Zhang J. L., Hong M. M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995 Apr;7(4):613–622. doi: 10.1046/j.1365-313x.1995.7040613.x. [DOI] [PubMed] [Google Scholar]
  28. Werneke J. M., Chatfield J. M., Ogren W. L. Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell. 1989 Aug;1(8):815–825. doi: 10.1105/tpc.1.8.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wiebauer K., Herrero J. J., Filipowicz W. Nuclear pre-mRNA processing in plants: distinct modes of 3'-splice-site selection in plants and animals. Mol Cell Biol. 1988 May;8(5):2042–2051. doi: 10.1128/mcb.8.5.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. von Schaewen A., Stitt M., Schmidt R., Sonnewald U., Willmitzer L. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J. 1990 Oct;9(10):3033–3044. doi: 10.1002/j.1460-2075.1990.tb07499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES