Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jun 15;24(12):2387–2394. doi: 10.1093/nar/24.12.2387

The Drosophila fork head factor directly controls larval salivary gland-specific expression of the glue protein gene Sgs3.

V Mach 1, K Ohno 1, H Kokubo 1, Y Suzuki 1
PMCID: PMC145950  PMID: 8710511

Abstract

The Drosophila Fork head protein participates in salivary gland formation, since salivary glands are missing in fork head embryos. Here we show that the fork head encoded protein binds to an upstream regulatory region of the larval salivary gland glue protein gene Sgs3. Mobility shift assay in the presence of an anti-Fork head antibody demonstrated that the Fork head factor interacts with the TGTTTGC box shown to be involved in tissue-specific Sgs3 expression. Experiments employing a set of oligonucleotide competitors revealed that Fork head binding was prevented by the same single base substitutions that were previously shown to interfere with the TGTTTGC element function in vivo. Furthermore, the anti-Fork head antibody bound to >60 sites of polytene chromosomes, including the puffs of all Sgs genes and Fork head protein was detected in the nuclei of salivary glands of larvae of all examined stages. These data provide experimental evidence for the hypothesis that the protein encoded by the fork head gene is required initially for salivary gland formation and is utilized subsequently in the control of larval genes specifically expressed in this organ.

Full Text

The Full Text of this article is available as a PDF (211.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres A. J., Fletcher J. C., Karim F. D., Thummel C. S. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev Biol. 1993 Dec;160(2):388–404. doi: 10.1006/dbio.1993.1315. [DOI] [PubMed] [Google Scholar]
  2. Bello B., Couble P. Specific expression of a silk-encoding gene of Bombyx in the anterior salivary gland of Drosophila. Nature. 1990 Aug 2;346(6283):480–482. doi: 10.1038/346480a0. [DOI] [PubMed] [Google Scholar]
  3. Clark K. L., Halay E. D., Lai E., Burley S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993 Jul 29;364(6436):412–420. doi: 10.1038/364412a0. [DOI] [PubMed] [Google Scholar]
  4. Crowley T. E., Mathers P. H., Meyerowitz E. M. A trans-acting regulatory product necessary for expression of the Drosophila melanogaster 68C glue gene cluster. Cell. 1984 Nov;39(1):149–156. doi: 10.1016/0092-8674(84)90200-9. [DOI] [PubMed] [Google Scholar]
  5. Cármenes R. S., Freije J. P., Molina M. M., Martín J. M. Predict7, a program for protein structure prediction. Biochem Biophys Res Commun. 1989 Mar 15;159(2):687–693. doi: 10.1016/0006-291X(89)90049-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Georgel P., Ramain P., Giangrande A., Dretzen G., Richards G., Bellard M. Sgs-3 chromatin structure and trans-activators: developmental and ecdysone induction of a glue enhancer-binding factor, GEBF-I, in Drosophila larvae. Mol Cell Biol. 1991 Jan;11(1):523–532. doi: 10.1128/mcb.11.1.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldsmith M. R., Kafatos F. C. Developmentally regulated genes in silkmoths. Annu Rev Genet. 1984;18:443–487. doi: 10.1146/annurev.ge.18.120184.002303. [DOI] [PubMed] [Google Scholar]
  8. Hui C. C., Matsuno K., Suzuki Y. Fibroin gene promoter contains a cluster of homeodomain binding sites that interact with three silk gland factors. J Mol Biol. 1990 Jun 20;213(4):651–670. doi: 10.1016/S0022-2836(05)80253-0. [DOI] [PubMed] [Google Scholar]
  9. Häcker U., Grossniklaus U., Gehring W. J., Jäckle H. Developmentally regulated Drosophila gene family encoding the fork head domain. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8754–8758. doi: 10.1073/pnas.89.18.8754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karim F. D., Guild G. M., Thummel C. S. The Drosophila Broad-Complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development. 1993 Jul;118(3):977–988. doi: 10.1242/dev.118.3.977. [DOI] [PubMed] [Google Scholar]
  11. Kaufmann E., Hoch M., Jäckle H. The interaction of DNA with the DNA-binding domain encoded by the Drosophila gene fork head. Eur J Biochem. 1994 Jul 15;223(2):329–337. doi: 10.1111/j.1432-1033.1994.tb18998.x. [DOI] [PubMed] [Google Scholar]
  12. Kuzin B., Tillib S., Sedkov Y., Mizrokhi L., Mazo A. The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head. Genes Dev. 1994 Oct 15;8(20):2478–2490. doi: 10.1101/gad.8.20.2478. [DOI] [PubMed] [Google Scholar]
  13. Lehmann M., Korge G. Ecdysone regulation of the Drosophila Sgs-4 gene is mediated by the synergistic action of ecdysone receptor and SEBP 3. EMBO J. 1995 Feb 15;14(4):716–726. doi: 10.1002/j.1460-2075.1995.tb07050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lemaigre F. P., Durviaux S. M., Rousseau G. G. Liver-specific factor binding to the liver promoter of a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J Biol Chem. 1993 Sep 15;268(26):19896–19905. [PubMed] [Google Scholar]
  15. Mach V., Takiya S., Ohno K., Handa H., Imai T., Suzuki Y. Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem. 1995 Apr 21;270(16):9340–9346. doi: 10.1074/jbc.270.16.9340. [DOI] [PubMed] [Google Scholar]
  16. Martin M., Giangrande A., Ruiz C., Richards G. Induction and repression of the Drosophila Sgs-3 glue gene are mediated by distinct sequences in the proximal promoter. EMBO J. 1989 Feb;8(2):561–568. doi: 10.1002/j.1460-2075.1989.tb03410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matsuno K., Hui C. C., Takiya S., Suzuki T., Ueno K., Suzuki Y. Transcription signals and protein binding sites for sericin gene transcription in vitro. J Biol Chem. 1989 Nov 5;264(31):18707–18713. [PubMed] [Google Scholar]
  18. Matsuno K., Takiya S., Hui C. C., Suzuki T., Fukuta M., Ueno K., Suzuki Y. Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3. Nucleic Acids Res. 1990 Apr 11;18(7):1853–1858. doi: 10.1093/nar/18.7.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McPherson C. E., Shim E. Y., Friedman D. S., Zaret K. S. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell. 1993 Oct 22;75(2):387–398. doi: 10.1016/0092-8674(93)80079-t. [DOI] [PubMed] [Google Scholar]
  20. Patel N. H., Martin-Blanco E., Coleman K. G., Poole S. J., Ellis M. C., Kornberg T. B., Goodman C. S. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell. 1989 Sep 8;58(5):955–968. doi: 10.1016/0092-8674(89)90947-1. [DOI] [PubMed] [Google Scholar]
  21. Payre F., Noselli S., Lefrère V., Vincent A. The closely related Drosophila sry beta and sry delta zinc finger proteins show differential embryonic expression and distinct patterns of binding sites on polytene chromosomes. Development. 1990 Sep;110(1):141–149. doi: 10.1242/dev.110.1.141. [DOI] [PubMed] [Google Scholar]
  22. Roark M., Raghavan K. V., Todo T., Mayeda C. A., Meyerowitz E. M. Cooperative enhancement at the Drosophila Sgs-3 locus. Dev Biol. 1990 May;139(1):121–133. doi: 10.1016/0012-1606(90)90283-o. [DOI] [PubMed] [Google Scholar]
  23. Suzuki Y. Genes that are involved in Bombyx body plan and silk gene regulation. Int J Dev Biol. 1994 Jun;38(2):231–235. [PubMed] [Google Scholar]
  24. Takano E., Maki M., Mori H., Hatanaka M., Marti T., Titani K., Kannagi R., Ooi T., Murachi T. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry. 1988 Mar 22;27(6):1964–1972. doi: 10.1021/bi00406a024. [DOI] [PubMed] [Google Scholar]
  25. Todo T., Roark M., Raghavan K. V., Mayeda C., Meyerowitz E. Fine-structure mutational analysis of a stage- and tissue-specific promoter element of the Drosophila glue gene Sgs-3. Mol Cell Biol. 1990 Nov;10(11):5991–6002. doi: 10.1128/mcb.10.11.5991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Turner F. R., Mahowald A. P. Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation. Dev Biol. 1977 Jun;57(2):403–416. doi: 10.1016/0012-1606(77)90225-1. [DOI] [PubMed] [Google Scholar]
  27. Weigel D., Jürgens G., Küttner F., Seifert E., Jäckle H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 1989 May 19;57(4):645–658. doi: 10.1016/0092-8674(89)90133-5. [DOI] [PubMed] [Google Scholar]
  28. Zink B., Paro R. In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature. 1989 Feb 2;337(6206):468–471. doi: 10.1038/337468a0. [DOI] [PubMed] [Google Scholar]
  29. von Kalm L., Crossgrove K., Von Seggern D., Guild G. M., Beckendorf S. K. The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO J. 1994 Aug 1;13(15):3505–3516. doi: 10.1002/j.1460-2075.1994.tb06657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES