Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 1;24(13):2606–2613. doi: 10.1093/nar/24.13.2606

Triplex formation by oligonucleotides containing novel deoxycytidine derivatives.

C Y Huang 1, G Bi 1, P S Miller 1
PMCID: PMC145961  PMID: 8692703

Abstract

Homopurine sequences of duplex DNA are binding sites for triplex-forming oligodeoxyribopyrimidines. The interactions of synthetic duplex DNA targets with an oligodeoxyribopyrimidine containing N4-(6-amino-2-pyridinyl)deoxycytidine (1), a nucleoside designed to interact with a single C-G base pair interruption of the purine target tract, was studied by UV melting, circular dichroism spectroscopy and dimethylsulfate alkylation experiments. Nucleoside 1 supports stable triplex formation at pH 7.0 with formation of a 1-Y-Z triad, where Y-Z is a base pair in the homopurine tract of the target. Selective interaction was observed when Y-Z was C-G, although A-T and, to a lesser extent, T-A and G-C base pairs were also recognized. The circular dichroism spectra of the triplex having a 1-C-G triad were similar to those of a triplex having a C(+)-G-C triad, suggesting that the overall structures of the two triplexes are quite similar. Removal of the 6-amino group from 1 essentially eliminated triplex formation. Reaction of a triplex having the 1-C-G triad with dimethylsulfate resulted in a 50% reduction of methylation of the G residue of this triad. In contrast, the G of a similar triplex containing a U-C-G triad was not protected from methylation by dimethylsulfate. These results are consistent with a binding mode in which the 6-amino-2-pyridinyl group of 1 spans the major groove of the target duplex at the 1-C-G binding site and forms a hydrogen bond with the O6 of G. An additional stabilizing hydrogen bond could form between the N4 of the imino tautomer of 1 and the N4 amino group of C.

Full Text

The Full Text of this article is available as a PDF (149.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beal P. A., Dervan P. B. The influence of single base triplet changes on the stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids Res. 1992 Jun 11;20(11):2773–2776. doi: 10.1093/nar/20.11.2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behe M. J. The DNA sequence of the human beta-globin region is strongly biased in favor of long strings of contiguous purine or pyrimidine residues. Biochemistry. 1987 Dec 1;26(24):7870–7875. doi: 10.1021/bi00398a050. [DOI] [PubMed] [Google Scholar]
  3. Branch A. D., Lee S. E., Neel O. D., Robertson H. D. Prominent polypurine and polypyrimidine tracts in plant viroids and in RNA of the human hepatitis delta agent. Nucleic Acids Res. 1993 Jul 25;21(15):3529–3535. doi: 10.1093/nar/21.15.3529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Durland R. H., Rao T. S., Bodepudi V., Seth D. M., Jayaraman K., Revankar G. R. Azole substituted oligonucleotides promote antiparallel triplex formation at non-homopurine duplex targets. Nucleic Acids Res. 1995 Feb 25;23(4):647–653. doi: 10.1093/nar/23.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durland R. H., Rao T. S., Revankar G. R., Tinsley J. H., Myrick M. A., Seth D. M., Rayford J., Singh P., Jayaraman K. Binding of T and T analogs to CG base pairs in antiparallel triplexes. Nucleic Acids Res. 1994 Aug 11;22(15):3233–3240. doi: 10.1093/nar/22.15.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fossella J. A., Kim Y. J., Shih H., Richards E. G., Fresco J. R. Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif. Nucleic Acids Res. 1993 Sep 25;21(19):4511–4515. doi: 10.1093/nar/21.19.4511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gee J. E., Revankar G. R., Rao T. S., Hogan M. E. Triplex formation at the rat neu gene utilizing imidazole and 2'-deoxy-6-thioguanosine base substitutions. Biochemistry. 1995 Feb 14;34(6):2042–2048. doi: 10.1021/bi00006a026. [DOI] [PubMed] [Google Scholar]
  8. Griffin L. C., Dervan P. B. Recognition of thymine adenine.base pairs by guanine in a pyrimidine triple helix motif. Science. 1989 Sep 1;245(4921):967–971. doi: 10.1126/science.2549639. [DOI] [PubMed] [Google Scholar]
  9. Horne D. A., Dervan P. B. Effects of an abasic site on triple helix formation characterized by affinity cleaving. Nucleic Acids Res. 1991 Sep 25;19(18):4963–4965. doi: 10.1093/nar/19.18.4963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mergny J. L., Sun J. S., Rougée M., Montenay-Garestier T., Barcelo F., Chomilier J., Hélène C. Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry. 1991 Oct 8;30(40):9791–9798. doi: 10.1021/bi00104a031. [DOI] [PubMed] [Google Scholar]
  11. Miller P. S., Bhan P., Cushman C. D., Trapane T. L. Recognition of a guanine-cytosine base pair by 8-oxoadenine. Biochemistry. 1992 Jul 28;31(29):6788–6793. doi: 10.1021/bi00144a020. [DOI] [PubMed] [Google Scholar]
  12. Miller P. S., Cushman C. D. Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A triads. Biochemistry. 1993 Mar 30;32(12):2999–3004. doi: 10.1021/bi00063a010. [DOI] [PubMed] [Google Scholar]
  13. Pilch D. S., Levenson C., Shafer R. H. Structural analysis of the (dA)10.2(dT)10 triple helix. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1942–1946. doi: 10.1073/pnas.87.5.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Radhakrishnan I., Gao X., de los Santos C., Live D., Patel D. J. NMR structural studies of intramolecular (Y+)n.(R+)n(Y-)nDNA triplexes in solution: imino and amino proton and nitrogen markers of G.TA base triple formation. Biochemistry. 1991 Sep 17;30(37):9022–9030. doi: 10.1021/bi00101a016. [DOI] [PubMed] [Google Scholar]
  15. Radhakrishnan I., Patel D. J. DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry. 1994 Sep 27;33(38):11405–11416. doi: 10.1021/bi00204a001. [DOI] [PubMed] [Google Scholar]
  16. Radhakrishnan I., Patel D. J. Solution structure and hydration patterns of a pyrimidine.purine.pyrimidine DNA triplex containing a novel T.CG base-triple. J Mol Biol. 1994 Aug 26;241(4):600–619. doi: 10.1006/jmbi.1994.1534. [DOI] [PubMed] [Google Scholar]
  17. Roberts R. W., Crothers D. M. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9397–9401. doi: 10.1073/pnas.88.21.9397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shea R. G., Ng P., Bischofberger N. Thermal denaturation profiles and gel mobility shift analysis of oligodeoxynucleotide triplexes. Nucleic Acids Res. 1990 Aug 25;18(16):4859–4866. doi: 10.1093/nar/18.16.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stilz H. U., Dervan P. B. Specific recognition of CG base pairs by 2-deoxynebularine within the purine.purine.pyrimidine triple-helix motif. Biochemistry. 1993 Mar 9;32(9):2177–2185. doi: 10.1021/bi00060a008. [DOI] [PubMed] [Google Scholar]
  20. Wang E., Malek S., Feigon J. Structure of a G.T.A triplet in an intramolecular DNA triplex. Biochemistry. 1992 May 26;31(20):4838–4846. doi: 10.1021/bi00135a015. [DOI] [PubMed] [Google Scholar]
  21. Washbrook E., Fox K. R. Alternate-strand DNA triple-helix formation using short acridine-linked oligonucleotides. Biochem J. 1994 Jul 15;301(Pt 2):569–575. doi: 10.1042/bj3010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yoon K., Hobbs C. A., Koch J., Sardaro M., Kutny R., Weis A. L. Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif: T.AT, C.GC, T.CG, and G.TA. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3840–3844. doi: 10.1073/pnas.89.9.3840. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES