Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 1;24(13):2470–2475. doi: 10.1093/nar/24.13.2470

G/C-modified oligodeoxynucleotides with selective complementarity: synthesis and hybridization properties.

J Woo 1, R B Meyer Jr 1, H B Gamper 1
PMCID: PMC145964  PMID: 8692683

Abstract

Modified oligodeoxyribonucleotides (ODNs) that have unique hybridization properties were designed and synthesized for the first time. These ODNs, called selective binding complementary ODNs (SBC ODNs), are unable to form stable hybrids with each other, yet are able to form stable, sequence specific hybrids with complementary unmodified strands of nucleic acid. To make SBC ODNs, deoxyguanosine (dG) and deoxycytidine (dC) were substituted with deoxyinosine (dI) and 3-(2'-deoxy-beta-D-ribofuranosyl)pyrrolo-[2,3-d]-pyrimidine-2-(3H)-one (dP), respectively. The hybridization properties of several otherwise identical complementary ODNs containing one or both of these nucleoside analogs were studied by both UV monitored thermal denaturation and non-denaturing PAGE. The data showed that while dI and dP did form base pairs with dC and dG, respectively, dI did not form a stable base pair with dP. A self-complementary ODN uniformly substituted with dI and dP acquired single-stranded character and was able to strand invade the end of a duplex DNA better than an unsubstituted ODN. This observation implies that SBC ODNs should effectively hybridize to hairpins present in single-stranded DNA or RNA.

Full Text

The Full Text of this article is available as a PDF (107.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albergo D. D., Marky L. A., Breslauer K. J., Turner D. H. Thermodynamics of (dG--dC)3 double-helix formation in water and deuterium oxide. Biochemistry. 1981 Mar 17;20(6):1409–1413. doi: 10.1021/bi00509a001. [DOI] [PubMed] [Google Scholar]
  2. Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N. T., Montenay-Garestier T., Hélène C. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297–3301. doi: 10.1073/pnas.81.11.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Case-Green S. C., Southern E. M. Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Res. 1994 Jan 25;22(2):131–136. doi: 10.1093/nar/22.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng S., Van Houten B., Gamper H. B., Sancar A., Hearst J. E. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J Biol Chem. 1988 Oct 15;263(29):15110–15117. [PubMed] [Google Scholar]
  5. Ecker D. J., Vickers T. A., Bruice T. W., Freier S. M., Jenison R. D., Manoharan M., Zounes M. Pseudo--half-knot formation with RNA. Science. 1992 Aug 14;257(5072):958–961. doi: 10.1126/science.1502560. [DOI] [PubMed] [Google Scholar]
  6. François J. C., Hélène C. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds. Biochemistry. 1995 Jan 10;34(1):65–72. doi: 10.1021/bi00001a008. [DOI] [PubMed] [Google Scholar]
  7. François J. C., Thuong N. T., Hélène C. Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides. Nucleic Acids Res. 1994 Sep 25;22(19):3943–3950. doi: 10.1093/nar/22.19.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gamper H. B., Cimino G. D., Hearst J. E. Solution hybridization of crosslinkable DNA oligonucleotides to bacteriophage M13 DNA. Effect of secondary structure on hybridization kinetics and equilibria. J Mol Biol. 1987 Sep 20;197(2):349–362. doi: 10.1016/0022-2836(87)90128-8. [DOI] [PubMed] [Google Scholar]
  9. Gildea B., McLaughlin L. W. The synthesis of 2-pyrimidinone nucleosides and their incorporation into oligodeoxynucleotides. Nucleic Acids Res. 1989 Mar 25;17(6):2261–2281. doi: 10.1093/nar/17.6.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iyer M., Norton J. C., Corey D. R. Accelerated hybridization of oligonucleotides to duplex DNA. J Biol Chem. 1995 Jun 16;270(24):14712–14717. doi: 10.1074/jbc.270.24.14712. [DOI] [PubMed] [Google Scholar]
  11. Jayasena V. K., Johnston B. H. Complement-stabilized D-loop. RecA-catalyzed stable pairing of linear DNA molecules at internal sites. J Mol Biol. 1993 Apr 5;230(3):1015–1024. doi: 10.1006/jmbi.1993.1216. [DOI] [PubMed] [Google Scholar]
  12. Kutyavin I. V., Podyminogin M. A., Bazhina YuN, Fedorova O. S., Knorre D. G., Levina A. S., Mamayev S. V., Zarytova V. F. N-(2-hydroxyethyl)phenazinium derivatives of oligonucleotides as effectors of the sequence-specific modification of nucleic acids with reactive oligonucleotide derivatives. FEBS Lett. 1988 Sep 26;238(1):35–38. doi: 10.1016/0014-5793(88)80220-5. [DOI] [PubMed] [Google Scholar]
  13. Lamm G. M., Blencowe B. J., Sproat B. S., Iribarren A. M., Ryder U., Lamond A. I. Antisense probes containing 2-aminoadenosine allow efficient depletion of U5 snRNP from HeLa splicing extracts. Nucleic Acids Res. 1991 Jun 25;19(12):3193–3198. doi: 10.1093/nar/19.12.3193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lima W. F., Monia B. P., Ecker D. J., Freier S. M. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry. 1992 Dec 8;31(48):12055–12061. doi: 10.1021/bi00163a013. [DOI] [PubMed] [Google Scholar]
  15. Martin F. H., Castro M. M., Aboul-ela F., Tinoco I., Jr Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res. 1985 Dec 20;13(24):8927–8938. doi: 10.1093/nar/13.24.8927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  17. Nielsen P. E., Egholm M., Buchardt O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem. 1994 Jan-Feb;5(1):3–7. doi: 10.1021/bc00025a001. [DOI] [PubMed] [Google Scholar]
  18. Sena E. P., Zarling D. A. Targeting in linear DNA duplexes with two complementary probe strands for hybrid stability. Nat Genet. 1993 Apr;3(4):365–372. doi: 10.1038/ng0493-365. [DOI] [PubMed] [Google Scholar]
  19. Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 1984 Jun 11;12(11):4539–4557. doi: 10.1093/nar/12.11.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES