Abstract
In Bacillus transformation, sexual isolation is known to be an exponential function of the sequence divergence between donor and recipient. Here, we have investigated the mechanism under which sequence divergence results in sexual isolation. We tested the effect of mismatch repair by comparing a wild-type strain and an isogenic mismatch-repair mutant for the relationship between sexual isolation and sequence divergence. Mismatch repair was shown to contribute to sexual isolation but was responsible for only a small fraction of the sexual isolation observed. Another possible mechanism of sexual isolation is that more divergent recipient and donor DNA strands have greater difficulty forming a heteroduplex because a region of perfect identity between donor and recipient is required for initiation of the heteroduplex. A mathematical model showed that this heteroduplex-resistance mechanism yields an exponential relationship between sexual isolation and sequence divergence. Moreover, this model yields an estimate of the size of the region of perfect identity that is comparable to independent estimates for Escherichia coli. For these reasons, and because all other mechanisms of sexual isolation may be ruled out, we conclude that resistance to heteroduplex formation is predominantly responsible for the exponential relationship between sexual isolation and sequence divergence in Bacillus transformation.
Full Text
The Full Text of this article is available as a PDF (80.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Claverys J. P., Lacks S. A. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev. 1986 Jun;50(2):133–165. doi: 10.1128/mr.50.2.133-165.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubnau D. Genetic competence in Bacillus subtilis. Microbiol Rev. 1991 Sep;55(3):395–424. doi: 10.1128/mr.55.3.395-424.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng G., Tsui H. C., Winkler M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 1996 Apr;178(8):2388–2396. doi: 10.1128/jb.178.8.2388-2396.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginetti F., Perego M., Albertini A. M., Galizzi A. Bacillus subtilis mutS mutL operon: identification, nucleotide sequence and mutagenesis. Microbiology. 1996 Aug;142(Pt 8):2021–2029. doi: 10.1099/13500872-142-8-2021. [DOI] [PubMed] [Google Scholar]
- Humbert O., Prudhomme M., Hakenbeck R., Dowson C. G., Claverys J. P. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9052–9056. doi: 10.1073/pnas.92.20.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matic I., Rayssiguier C., Radman M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell. 1995 Feb 10;80(3):507–515. doi: 10.1016/0092-8674(95)90501-4. [DOI] [PubMed] [Google Scholar]
- Méjean V., Claverys J. P. DNA processing during entry in transformation of Streptococcus pneumoniae. J Biol Chem. 1993 Mar 15;268(8):5594–5599. [PubMed] [Google Scholar]
- Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. doi: 10.1038/342396a0. [DOI] [PubMed] [Google Scholar]
- Roberts M. S., Cohan F. M. The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics. 1993 Jun;134(2):401–408. doi: 10.1093/genetics/134.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. R. Homologous recombination in procaryotes. Microbiol Rev. 1988 Mar;52(1):1–28. doi: 10.1128/mr.52.1.1-28.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zawadzki P., Cohan F. M. The size and continuity of DNA segments integrated in Bacillus transformation. Genetics. 1995 Dec;141(4):1231–1243. doi: 10.1093/genetics/141.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zawadzki P., Roberts M. S., Cohan F. M. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics. 1995 Jul;140(3):917–932. doi: 10.1093/genetics/140.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]