Skip to main content
Genetics logoLink to Genetics
. 1998 Jan;148(1):445–456. doi: 10.1093/genetics/148.1.445

Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag1.

D Liu 1, N M Crawford 1
PMCID: PMC1459774  PMID: 9475754

Abstract

Tag1 is an autonomous transposon of Arabidopsis thaliana. The excision behavior of Tag1 during reproductive and vegetative development was examined using CaMV 35STag1-GUS constructs. Germinal reversion frequencies varied from 0 to 27% and correlated with Tag1 copy number. Southern blot and somatic sector analyses indicated that each revertant was derived from an independent excision event, and approximately 75% of the revertants had new Tag1 insertions. Revertants were obtained with similar frequencies from the male and female parents. In flowers, small somatic sectors were observed in siliques, carpels, petals and sepals while stemlike organs (filaments and pedicels) had larger sectors. No sectors encompassing entire flowers or inflorescences were observed, however, indicating that excision occurs late in flower development and rarely in inflorescence meristems. Late excision was also observed during vegetative development with 99.8% of leaves showing small sectors encompassing no more than 20 cells. Roots and cotyledons, however, showed larger sectors that included entire lateral roots and cotyledons. These results indicate that Tag1 can excise in the embryo and all the organs of the plant with the timing of excision being restricted to late stages of vegetative and reproductive development in the shoot.

Full Text

The Full Text of this article is available as a PDF (476.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Ren L., Chua N. H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 1989 Aug;8(8):2195–2202. doi: 10.1002/j.1460-2075.1989.tb08342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bossinger G., Smyth D. R. Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development. 1996 Apr;122(4):1093–1102. doi: 10.1242/dev.122.4.1093. [DOI] [PubMed] [Google Scholar]
  3. Brink R. A., Williams E. Mutable R-navajo alleles of cyclic origin in maize. Genetics. 1973 Feb;73(2):273–296. doi: 10.1093/genetics/73.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown W. E., Robertson D. S., Bennetzen J. L. Molecular analysis of multiple mutator-derived alleles of the bronze locus of maize. Genetics. 1989 Jun;122(2):439–445. doi: 10.1093/genetics/122.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calvi B. R., Hong T. J., Findley S. D., Gelbart W. M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell. 1991 Aug 9;66(3):465–471. doi: 10.1016/0092-8674(81)90010-6. [DOI] [PubMed] [Google Scholar]
  6. Donlin M. J., Lisch D., Freeling M. Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. Plant Cell. 1995 Dec;7(12):1989–2000. doi: 10.1105/tpc.7.12.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fedoroff N. V. About maize transposable elements and development. Cell. 1989 Jan 27;56(2):181–191. doi: 10.1016/0092-8674(89)90891-x. [DOI] [PubMed] [Google Scholar]
  8. Finnegan E. J., Taylor B. H., Craig S., Dennis E. S. Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell. 1989 Aug;1(8):757–764. doi: 10.1105/tpc.1.8.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grappin P., Audeon C., Chupeau M. C., Grandbastien M. A. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol Gen Genet. 1996 Sep 25;252(4):386–397. doi: 10.1007/BF02173003. [DOI] [PubMed] [Google Scholar]
  10. Hehl R., Baker B. Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell. 1990 Aug;2(8):709–721. doi: 10.1105/tpc.2.8.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heinlein M., Brattig T., Kunze R. In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 1994 May;5(5):705–714. doi: 10.1111/j.1365-313x.1994.00705.x. [DOI] [PubMed] [Google Scholar]
  12. Heinlein M. Excision patterns of Activator (Ac) and Dissociation (Ds) elements in Zea mays L.: implications for the regulation of transposition. Genetics. 1996 Dec;144(4):1851–1869. doi: 10.1093/genetics/144.4.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jefferson R. A. The GUS reporter gene system. Nature. 1989 Dec 14;342(6251):837–838. doi: 10.1038/342837a0. [DOI] [PubMed] [Google Scholar]
  14. Jones J. D., Carland F. M., Maliga P., Dooner H. K. Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science. 1989 Apr 14;244(4901):204–207. doi: 10.1126/science.244.4901.204. [DOI] [PubMed] [Google Scholar]
  15. Keller J., Jones J. D., Harper E., Lim E., Carland F., Ralston E. J., Dooner H. K. Effects of gene dosage and sequence modification on the frequency and timing of transposition of the maize element Activator (Ac) in tobacco. Plant Mol Biol. 1993 Jan;21(1):157–170. doi: 10.1007/BF00039626. [DOI] [PubMed] [Google Scholar]
  16. Lawson E. J., Scofield S. R., Sjodin C., Jones J. D., Dean C. Modification of the 5' untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. Mol Gen Genet. 1994 Dec 1;245(5):608–615. doi: 10.1007/BF00282223. [DOI] [PubMed] [Google Scholar]
  17. Lazo G. R., Stein P. A., Ludwig R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (N Y) 1991 Oct;9(10):963–967. doi: 10.1038/nbt1091-963. [DOI] [PubMed] [Google Scholar]
  18. Levy A. A., Britt A. B., Luehrsen K. R., Chandler V. L., Warren C., Walbot V. Developmental and genetic aspects of Mutator excision in maize. Dev Genet. 1989;10(6):520–531. doi: 10.1002/dvg.1020100611. [DOI] [PubMed] [Google Scholar]
  19. Levy A. A., Walbot V. Regulation of the timing of transposable element excision during maize development. Science. 1990 Jun 22;248(4962):1534–1537. doi: 10.1126/science.2163107. [DOI] [PubMed] [Google Scholar]
  20. Lisch D., Chomet P., Freeling M. Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics. 1995 Apr;139(4):1777–1796. doi: 10.1093/genetics/139.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Masson P., Fedoroff N. V. Mobility of the maize suppressor-mutator element in transgenic tobacco cells. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2219–2223. doi: 10.1073/pnas.86.7.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  23. McCLINTOCK B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 1950 Jun;36(6):344–355. doi: 10.1073/pnas.36.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Osborne B. I., Baker B. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr Opin Cell Biol. 1995 Jun;7(3):406–413. doi: 10.1016/0955-0674(95)80097-2. [DOI] [PubMed] [Google Scholar]
  25. Robertson D. S. Mutator activity in maize: timing of its activation in ontogeny. Science. 1981 Sep 25;213(4515):1515–1517. doi: 10.1126/science.213.4515.1515. [DOI] [PubMed] [Google Scholar]
  26. Robertson D. S. The timing of mu activity in maize. Genetics. 1980 Apr;94(4):969–978. doi: 10.1093/genetics/94.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scofield S. R., English J. J., Jones J. D. High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell. 1993 Nov 5;75(3):507–517. doi: 10.1016/0092-8674(93)90385-4. [DOI] [PubMed] [Google Scholar]
  28. Sundaresan V., Springer P., Volpe T., Haward S., Jones J. D., Dean C., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 1995 Jul 15;9(14):1797–1810. doi: 10.1101/gad.9.14.1797. [DOI] [PubMed] [Google Scholar]
  29. Tsay Y. F., Frank M. J., Page T., Dean C., Crawford N. M. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science. 1993 Apr 16;260(5106):342–344. doi: 10.1126/science.8385803. [DOI] [PubMed] [Google Scholar]
  30. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walbot V. Inheritance of mutator activity in Zea mays as assayed by somatic instability of the bz2-mu1 allele. Genetics. 1986 Dec;114(4):1293–1312. doi: 10.1093/genetics/114.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Warren W. D., Atkinson P. W., O'Brochta D. A. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res. 1994 Oct;64(2):87–97. doi: 10.1017/s0016672300032699. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES