Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 1;24(13):2483–2487. doi: 10.1093/nar/24.13.2483

A new class of genome rare cutters.

A G Veselkov 1, V V Demidov 1, P E Nielson 1, M D Frank-Kamenetskii 1
PMCID: PMC145980  PMID: 8692685

Abstract

Although significant efforts have been directed at developing efficient techniques for rare and super rare genome cutting, only limited success has been achieved. Here we propose a new approach to solve this problem. We demonstrate that peptide nucleic acid 'clamps' (bis-PNAs) bind strongly and sequence specifically to short homopyrimidine sites on lambda and yeast genomic DNAs. Such binding efficiently shields methylation/restriction sites which overlap with the bis-PNA binding sites from enzymatic methylation. After removing the bis-PNA, the genomic DNAs are quantitatively cleaved by restriction enzymes into a limited number of pieces of lengths from several hundred kbp to several Mbp. By combining various bis-PNAs with different methylation/restriction enzyme pairs, a huge new class of genome rare cutters can be created. These cutters cover the range of recognition specificities where very few, if any, cutters are now available.

Full Text

The Full Text of this article is available as a PDF (101.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betts L., Josey J. A., Veal J. M., Jordan S. R. A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science. 1995 Dec 15;270(5243):1838–1841. doi: 10.1126/science.270.5243.1838. [DOI] [PubMed] [Google Scholar]
  2. Bhagwat A. S. Restriction enzymes: properties and use. Methods Enzymol. 1992;216:199–224. doi: 10.1016/0076-6879(92)16023-d. [DOI] [PubMed] [Google Scholar]
  3. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  4. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  5. Cherny D. Y., Belotserkovskii B. P., Frank-Kamenetskii M. D., Egholm M., Buchardt O., Berg R. H., Nielsen P. E. DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1667–1670. doi: 10.1073/pnas.90.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., Egholm M., Buchardt O., Nielsen P. E., Coull J. Solid-phase synthesis of peptide nucleic acids. J Pept Sci. 1995 May-Jun;1(3):175–183. doi: 10.1002/psc.310010304. [DOI] [PubMed] [Google Scholar]
  7. Demidov V. V., Yavnilovich M. V., Belotserkovskii B. P., Frank-Kamenetskii M. D., Nielsen P. E. Kinetics and mechanism of polyamide ("peptide") nucleic acid binding to duplex DNA. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2637–2641. doi: 10.1073/pnas.92.7.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dujon B., Belfort M., Butow R. A., Jacq C., Lemieux C., Perlman P. S., Vogt V. M. Mobile introns: definition of terms and recommended nomenclature. Gene. 1989 Oct 15;82(1):115–118. doi: 10.1016/0378-1119(89)90035-8. [DOI] [PubMed] [Google Scholar]
  9. Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., Berg R. H., Kim S. K., Norden B., Nielsen P. E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993 Oct 7;365(6446):566–568. doi: 10.1038/365566a0. [DOI] [PubMed] [Google Scholar]
  10. Egholm M., Christensen L., Dueholm K. L., Buchardt O., Coull J., Nielsen P. E. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995 Jan 25;23(2):217–222. doi: 10.1093/nar/23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferrin L. J., Camerini-Otero R. D. Long-range mapping of gaps and telomeres with RecA-assisted restriction endonuclease (RARE) cleavage. Nat Genet. 1994 Apr;6(4):379–383. doi: 10.1038/ng0494-379. [DOI] [PubMed] [Google Scholar]
  12. Ferrin L. J., Camerini-Otero R. D. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science. 1991 Dec 6;254(5037):1494–1497. doi: 10.1126/science.1962209. [DOI] [PubMed] [Google Scholar]
  13. Gnirke A., Iadonato S. P., Kwok P. Y., Olson M. V. Physical calibration of yeast artificial chromosome contig maps by RecA-assisted restriction endonuclease (RARE) cleavage. Genomics. 1994 Nov 15;24(2):199–210. doi: 10.1006/geno.1994.1607. [DOI] [PubMed] [Google Scholar]
  14. Koob M., Burkiewicz A., Kur J., Szybalski W. RecA-AC: single-site cleavage of plasmids and chromosomes at any predetermined restriction site. Nucleic Acids Res. 1992 Nov 11;20(21):5831–5836. doi: 10.1093/nar/20.21.5831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koob M. Conferring new cleavage specificities of restriction endonucleases. Methods Enzymol. 1992;216:321–329. doi: 10.1016/0076-6879(92)16030-n. [DOI] [PubMed] [Google Scholar]
  16. Koob M., Szybalski W. Cleaving yeast and Escherichia coli genomes at a single site. Science. 1990 Oct 12;250(4978):271–273. doi: 10.1126/science.2218529. [DOI] [PubMed] [Google Scholar]
  17. Kur J., Koob M., Burkiewicz A., Szybalski W. A novel method for converting common restriction enzymes into rare cutters: integration host factor-mediated Achilles' cleavage (IHF-AC). Gene. 1992 Jan 2;110(1):1–7. doi: 10.1016/0378-1119(92)90437-t. [DOI] [PubMed] [Google Scholar]
  18. Murray A. W., Szostak J. W. Construction of artificial chromosomes in yeast. Nature. 1983 Sep 15;305(5931):189–193. doi: 10.1038/305189a0. [DOI] [PubMed] [Google Scholar]
  19. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res. 1993 Jan 25;21(2):197–200. doi: 10.1093/nar/21.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  21. Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., Noren C. J., Thorner J., Belfort M. Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Res. 1994 Apr 11;22(7):1125–1127. doi: 10.1093/nar/22.7.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Piña B., Berger S., Marcus G. A., Silverman N., Agapite J., Guarente L. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol Cell Biol. 1993 Oct;13(10):5981–5989. doi: 10.1128/mcb.13.10.5981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  24. Schwartz D. C., Li X., Hernandez L. I., Ramnarain S. P., Huff E. J., Wang Y. K. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science. 1993 Oct 1;262(5130):110–114. doi: 10.1126/science.8211116. [DOI] [PubMed] [Google Scholar]
  25. Strobel S. A., Dervan P. B. Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature. 1991 Mar 14;350(6314):172–174. doi: 10.1038/350172a0. [DOI] [PubMed] [Google Scholar]
  26. Veselkov A. G., Demidov V. V., Frank-Kamenetskii M. D., Nielsen P. E. PNA as a rare genome-cutter. Nature. 1996 Jan 18;379(6562):214–214. doi: 10.1038/379214a0. [DOI] [PubMed] [Google Scholar]
  27. Wang Y. K., Huff E. J., Schwartz D. C. Optical mapping of site-directed cleavages on single DNA molecules by the RecA-assisted restriction endonuclease technique. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):165–169. doi: 10.1073/pnas.92.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES