Skip to main content
Genetics logoLink to Genetics
. 1998 Jan;148(1):373–380. doi: 10.1093/genetics/148.1.373

Genetic analysis of chromosomal rearrangements in the cyclops region of the zebrafish genome.

W S Talbot 1, E S Egan 1, M A Gates 1, C Walker 1, B Ullmann 1, S C Neuhauss 1, C B Kimmel 1, J H Postlethwait 1
PMCID: PMC1459804  PMID: 9475747

Abstract

Genetic screens in zebrafish have provided mutations in hundreds of genes with essential functions in the developing embryo. To investigate the possible uses of chromosomal rearrangements in the analysis of these mutations, we genetically characterized three gamma-ray induced alleles of cyclops (cyc), a gene required for development of midline structures. We show that cyc maps near one end of Linkage Group 12 (LG 12) and that this region is involved in a reciprocal translocation with LG 2 in one gamma-ray induced mutation, cyc(b213). The translocated segments together cover approximately 5% of the genetic map, and we show that this rearrangement is useful for mapping cloned genes that reside in the affected chromosomal regions. The other two alleles, cyc(b16) and cyc(b229), have deletions in the distal region of LG 12. Interestingly, both of these mutations suppress recombination between genetic markers in LG 12, including markers at a distance from the deletion. This observation raises the possibility that these deletions affect a site required for meiotic recombination on the LG 12 chromosome. The cyc(b16) and cyc(b229) mutations may be useful for balancing other lethal mutations located in the distal region of LG 12. These results show that chromosomal rearrangements can provide useful resources for mapping and genetic analyses in zebrafish.

Full Text

The Full Text of this article is available as a PDF (279.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown S. D., Peters J. Combining mutagenesis and genomics in the mouse--closing the phenotype gap. Trends Genet. 1996 Nov;12(11):433–435. doi: 10.1016/0168-9525(96)30094-2. [DOI] [PubMed] [Google Scholar]
  2. Chakrabarti S., Streisinger G., Singer F., Walker C. Frequency of gamma-Ray Induced Specific Locus and Recessive Lethal Mutations in Mature Germ Cells of the Zebrafish, BRACHYDANIO RERIO. Genetics. 1983 Jan;103(1):109–123. doi: 10.1093/genetics/103.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Concordet J. P., Lewis K. E., Moore J. W., Goodrich L. V., Johnson R. L., Scott M. P., Ingham P. W. Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development. 1996 Sep;122(9):2835–2846. doi: 10.1242/dev.122.9.2835. [DOI] [PubMed] [Google Scholar]
  4. Cox D. R., Burmeister M., Price E. R., Kim S., Myers R. M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science. 1990 Oct 12;250(4978):245–250. doi: 10.1126/science.2218528. [DOI] [PubMed] [Google Scholar]
  5. Driever W., Solnica-Krezel L., Schier A. F., Neuhauss S. C., Malicki J., Stemple D. L., Stainier D. Y., Zwartkruis F., Abdelilah S., Rangini Z. A genetic screen for mutations affecting embryogenesis in zebrafish. Development. 1996 Dec;123:37–46. doi: 10.1242/dev.123.1.37. [DOI] [PubMed] [Google Scholar]
  6. Driever W., Stemple D., Schier A., Solnica-Krezel L. Zebrafish: genetic tools for studying vertebrate development. Trends Genet. 1994 May;10(5):152–159. doi: 10.1016/0168-9525(94)90091-4. [DOI] [PubMed] [Google Scholar]
  7. Eisen J. S. Zebrafish make a big splash. Cell. 1996 Dec 13;87(6):969–977. doi: 10.1016/s0092-8674(00)81792-4. [DOI] [PubMed] [Google Scholar]
  8. Ekker M., Speevak M. D., Martin C. C., Joly L., Giroux G., Chevrette M. Stable transfer of zebrafish chromosome segments into mouse cells. Genomics. 1996 Apr 1;33(1):57–64. doi: 10.1006/geno.1996.0159. [DOI] [PubMed] [Google Scholar]
  9. Felsenfeld A. L. Defining the boundaries of zebrafish developmental genetics. Nat Genet. 1996 Nov;14(3):258–263. doi: 10.1038/ng1196-258. [DOI] [PubMed] [Google Scholar]
  10. Fisher S., Amacher S. L., Halpern M. E. Loss of cerebum function ventralizes the zebrafish embryo. Development. 1997 Apr;124(7):1301–1311. doi: 10.1242/dev.124.7.1301. [DOI] [PubMed] [Google Scholar]
  11. Fritz A., Rozowski M., Walker C., Westerfield M. Identification of selected gamma-ray induced deficiencies in zebrafish using multiplex polymerase chain reaction. Genetics. 1996 Dec;144(4):1735–1745. doi: 10.1093/genetics/144.4.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gaiano N., Amsterdam A., Kawakami K., Allende M., Becker T., Hopkins N. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature. 1996 Oct 31;383(6603):829–832. doi: 10.1038/383829a0. [DOI] [PubMed] [Google Scholar]
  13. Grunwald D. J. A fin-de siècle achievement: charting new waters in vertebrate biology. Science. 1996 Dec 6;274(5293):1634–1635. doi: 10.1126/science.274.5293.1634. [DOI] [PubMed] [Google Scholar]
  14. Haffter P., Granato M., Brand M., Mullins M. C., Hammerschmidt M., Kane D. A., Odenthal J., van Eeden F. J., Jiang Y. J., Heisenberg C. P. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996 Dec;123:1–36. doi: 10.1242/dev.123.1.1. [DOI] [PubMed] [Google Scholar]
  15. Halpern M. E., Hatta K., Amacher S. L., Talbot W. S., Yan Y. L., Thisse B., Thisse C., Postlethwait J. H., Kimmel C. B. Genetic interactions in zebrafish midline development. Dev Biol. 1997 Jul 15;187(2):154–170. doi: 10.1006/dbio.1997.8605. [DOI] [PubMed] [Google Scholar]
  16. Hatta K., Kimmel C. B., Ho R. K., Walker C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature. 1991 Mar 28;350(6316):339–341. doi: 10.1038/350339a0. [DOI] [PubMed] [Google Scholar]
  17. Henion P. D., Raible D. W., Beattie C. E., Stoesser K. L., Weston J. A., Eisen J. S. Screen for mutations affecting development of Zebrafish neural crest. Dev Genet. 1996;18(1):11–17. doi: 10.1002/(SICI)1520-6408(1996)18:1<11::AID-DVG2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  18. Ho R. K., Kane D. A. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature. 1990 Dec 20;348(6303):728–730. doi: 10.1038/348728a0. [DOI] [PubMed] [Google Scholar]
  19. Holder N., McMahon A. Genes from zebrafish screens. Nature. 1996 Dec 12;384(6609):515–516. doi: 10.1038/384515a0. [DOI] [PubMed] [Google Scholar]
  20. Johnson S. L., Gates M. A., Johnson M., Talbot W. S., Horne S., Baik K., Rude S., Wong J. R., Postlethwait J. H. Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics. 1996 Apr;142(4):1277–1288. doi: 10.1093/genetics/142.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kimmel C. B. Genetics and early development of zebrafish. Trends Genet. 1989 Aug;5(8):283–288. doi: 10.1016/0168-9525(89)90103-0. [DOI] [PubMed] [Google Scholar]
  22. Knapik E. W., Goodman A., Atkinson O. S., Roberts C. T., Shiozawa M., Sim C. U., Weksler-Zangen S., Trolliet M. R., Futrell C., Innes B. A. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development. 1996 Dec;123:451–460. doi: 10.1242/dev.123.1.451. [DOI] [PubMed] [Google Scholar]
  23. McKim K. S., Howell A. M., Rose A. M. The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 1988 Dec;120(4):987–1001. doi: 10.1093/genetics/120.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Melby A. E., Warga R. M., Kimmel C. B. Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development. 1996 Jul;122(7):2225–2237. doi: 10.1242/dev.122.7.2225. [DOI] [PubMed] [Google Scholar]
  25. Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
  26. Postlethwait J. H., Talbot W. S. Zebrafish genomics: from mutants to genes. Trends Genet. 1997 May;13(5):183–190. doi: 10.1016/s0168-9525(97)01129-3. [DOI] [PubMed] [Google Scholar]
  27. Riley B. B., Grunwald D. J. Efficient induction of point mutations allowing recovery of specific locus mutations in zebrafish. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5997–6001. doi: 10.1073/pnas.92.13.5997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schier A. F., Neuhauss S. C., Harvey M., Malicki J., Solnica-Krezel L., Stainier D. Y., Zwartkruis F., Abdelilah S., Stemple D. L., Rangini Z. Mutations affecting the development of the embryonic zebrafish brain. Development. 1996 Dec;123:165–178. doi: 10.1242/dev.123.1.165. [DOI] [PubMed] [Google Scholar]
  29. Schier A. F., Neuhauss S. C., Helde K. A., Talbot W. S., Driever W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development. 1997 Jan;124(2):327–342. doi: 10.1242/dev.124.2.327. [DOI] [PubMed] [Google Scholar]
  30. Talbot W. S., Trevarrow B., Halpern M. E., Melby A. E., Farr G., Postlethwait J. H., Jowett T., Kimmel C. B., Kimelman D. A homeobox gene essential for zebrafish notochord development. Nature. 1995 Nov 9;378(6553):150–157. doi: 10.1038/378150a0. [DOI] [PubMed] [Google Scholar]
  31. Villeneuve A. M. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics. 1994 Mar;136(3):887–902. doi: 10.1093/genetics/136.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wicky C., Rose A. M. The role of chromosome ends during meiosis in Caenorhabditis elegans. Bioessays. 1996 Jun;18(6):447–452. doi: 10.1002/bies.950180606. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES