Skip to main content
Genetics logoLink to Genetics
. 1998 Feb;148(2):743–752. doi: 10.1093/genetics/148.2.743

The tumorous-head-1 locus affects bristle number of the Drosophila melanogaster cuticle.

G Packert 1, D T Kuhn 1
PMCID: PMC1459811  PMID: 9504921

Abstract

The tuh-1 maternal effect locus contains two naturally occurring isoalleles, tuh-1h and tuh-1g. Until recently there has been no possibility to distinguish between the tuh-lh and the tuh-1g maternal effects other than evaluating their effect on the Bithorax-Complex (BXC) Abdominal B (Abd-B) mutant tuh-3. However, in this report we identify a bristle phenotype associated with the tuh-1 locus that has very interesting evolutionary implications. Females homozygous for tuh-1h always produce adult offspring with more bristles than females homozygous or heterozygous for tuh-1g. The effect is global. Increased bristle number occurs in the head, the thorax, and the anterior and posterior abdomen. Females totally deficient for the tuh-1 gene produce offspring with high bristle number. Thus, the bristle phenotype results from the absence of the maternally contributed tuh-1g factor. Genetic evidence shows that the bristle phenotype is caused by the tuh-1 locus and that tuh-1h is completely recessive to tuh-1g. The tuh-1 locus is located at the euchromatin-beta-heterochromatin junction near the centromere of the X chromosome and deficiency analysis places the locus between the lethal genes extra organs (eo) and lethal B20 (lB20). The variance in bristle number attributable to the tuh-1 locus in nature is approximately 10.1%, an indication that the bristle phenotype is most likely a neutral, pleiotrophic side effect of tuh-1.

Full Text

The Full Text of this article is available as a PDF (148.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caligari P. D., Mather K. Genotype--environment interaction. III. Interactions in Drosophila melanogaster. Proc R Soc Lond B Biol Sci. 1975 Dec 2;191(1104):387–411. doi: 10.1098/rspb.1975.0135. [DOI] [PubMed] [Google Scholar]
  3. Frankham R., Briscoe D. A., Nurthen R. K. Unequal crossing over at the rRNA tandon as a source of quantitative genetic variation in Drosophila. Genetics. 1980 Jul;95(3):727–742. doi: 10.1093/genetics/95.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GARDNER E. J., WOOLF C. M. The influence of high and low temperatures on the expression of tumorous head in Drosophila melanogaster. Genetics. 1950 Jan;35(1):44–55. doi: 10.1093/genetics/35.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gardner E. J., Woolf C. M. Maternal Effect Involved in the Inheritance of Abnormal Growths in the Head Region of Drosophila Melanogaster. Genetics. 1949 Sep;34(5):573–585. doi: 10.1093/genetics/34.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Graba Y., Aragnol D., Laurenti P., Garzino V., Charmot D., Berenger H., Pradel J. Homeotic control in Drosophila; the scabrous gene is an in vivo target of Ultrabithorax proteins. EMBO J. 1992 Sep;11(9):3375–3384. doi: 10.1002/j.1460-2075.1992.tb05416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JOHNSON G. R., GARDNER E. J. ALLELES TU-1 AND TU-1+ IN NATURAL AND EXPERIMENTAL POPULATIONS OF DROSOPHILA MELANOGASTER. Genetics. 1965 Jan;51:149–156. doi: 10.1093/genetics/51.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kuhn D. T., Mack J. A., Duan C., Packert G. Tumorous-head (tuh-1; tuh-3) modulates Abd-B bithorax-complex functions in Drosophila melanogaster. Genetics. 1993 Mar;133(3):593–604. doi: 10.1093/genetics/133.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuhn D. T., Packert G. Tumorous-head-type mutants of the distal bithorax complex cause dominant gain and recessive loss of function in Drosophila melanogaster. Dev Biol. 1988 Jan;125(1):8–18. doi: 10.1016/0012-1606(88)90054-1. [DOI] [PubMed] [Google Scholar]
  10. Kuhn D. T., Woods D. F., Andrew D. J. Deletion analysis of the tumorous-head (tuh-3) gene in Drosophila melanogaster. Genetics. 1981 Sep;99(1):99–107. doi: 10.1093/genetics/99.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
  12. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mackay T. F., Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990 Nov 1;348(6296):64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
  14. Mackay T. F. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. Bioessays. 1996 Feb;18(2):113–121. doi: 10.1002/bies.950180207. [DOI] [PubMed] [Google Scholar]
  15. Miklos G. L., Yamamoto M. T., Davies J., Pirrotta V. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2051–2055. doi: 10.1073/pnas.85.7.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mlodzik M., Baker N. E., Rubin G. M. Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila. Genes Dev. 1990 Nov;4(11):1848–1861. doi: 10.1101/gad.4.11.1848. [DOI] [PubMed] [Google Scholar]
  17. Parks A. L., Muskavitch M. A. Delta function is required for bristle organ determination and morphogenesis in Drosophila. Dev Biol. 1993 Jun;157(2):484–496. doi: 10.1006/dbio.1993.1151. [DOI] [PubMed] [Google Scholar]
  18. Postlethwait J. H., Bryant P. J., Schubiger G. The homoeotic effect of "tumorous head" in Drosophila melanogaster. Dev Biol. 1972 Nov;29(3):337–342. doi: 10.1016/0012-1606(72)90073-5. [DOI] [PubMed] [Google Scholar]
  19. Pyati J. Cytological localization of the maternal effect gene, tuh-1, in Drosophila melanogaster. Mol Gen Genet. 1976 Jul 23;146(2):189–190. doi: 10.1007/BF00268087. [DOI] [PubMed] [Google Scholar]
  20. Schnee F. B., Thompson J. N. Conditional Polygenic Effects in the Sternopleural Bristle System of DROSOPHILA MELANOGASTER. Genetics. 1984 Oct;108(2):409–424. doi: 10.1093/genetics/108.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shrimpton A. E., Robertson A. The Isolation of Polygenic Factors Controlling Bristle Score in Drosophila Melanogaster. II. Distribution of Third Chromosome Bristle Effects within Chromosome Sections. Genetics. 1988 Mar;118(3):445–459. doi: 10.1093/genetics/118.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Slatkin M., Frank S. A. The quantitative genetic consequences of pleiotropy under stabilizing and directional selection. Genetics. 1990 May;125(1):207–213. doi: 10.1093/genetics/125.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wollner H. J., Segal L., Robertson A. F., Iskrant A. P., Joliet P. V., Palmer J. R., Freedman H. A., Drake G. L., Leblanc R. B., Buck G. S., Hottel H. C., Bugbee P., Severance J. L., Appel J., Fynn P. J., Dykstra P., Dukelow D. A. General discussion. Bull N Y Acad Med. 1967 Aug;43(8):752–766. [PMC free article] [PubMed] [Google Scholar]
  24. Woolf C. M. Male genital disc defect in Drosophila melanogaster. Genetics. 1968 Sep;60(1):111–121. doi: 10.1093/genetics/60.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woolf C. M. Male genital disc defect in Drosophila melanogaster. Genetics. 1968 Sep;60(1):111–121. doi: 10.1093/genetics/60.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woolf C. M. Maternal effect influencing male genital disc development in Drosophila melanogaster. Genetics. 1966 Feb;53(2):295–302. doi: 10.1093/genetics/53.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES