Abstract
We report the first detailed genetic linkage map of rainbow trout (Oncorhynchus mykiss). The segregation analysis was performed using 76 doubled haploid rainbow trout produced by androgenesis from a hybrid between the "OSU" and "Arlee" androgenetically derived homozygous lines. Four hundred and seventy-six markers segregated into 31 major linkage groups and 11 small groups (< 5 markers/group). The minimum genome size is estimated to be 2627.5 cM in length. The sex-determining locus segregated to a distal position on one of the linkage groups. We analyzed the chromosomal distribution of three classes of markers: (1) amplified fragment length polymorphisms, (2) variable number of tandem repeats, and (3) markers obtained using probes homologous to the 5' or 3' end of salmonid-specific small interspersed nuclear elements. Many of the first class of markers were clustered in regions that appear to correspond to centromeres. The second class of markers were more telomeric in distribution, and the third class were intermediate. Tetrasomic inheritance, apparently related to the tetraploid ancestry of salmonid fishes, was detected at one simple sequence repeat locus and suggested by the presence of one extremely large linkage group that appeared to consist of two smaller groups linked at their tips. The double haploid rainbow trout lines and linkage map present a foundation for further genomic studies.
Full Text
The Full Text of this article is available as a PDF (166.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allendorf F. W., Gellman W. A., Thorgaard G. H. Sex-linkage of two enzyme loci in Oncorhyncus mykiss (rainbow trout) Heredity (Edinb) 1994 May;72(Pt 5):498–507. doi: 10.1038/hdy.1994.67. [DOI] [PubMed] [Google Scholar]
- Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
- Buetow K. H. Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet. 1991 Nov;49(5):985–994. [PMC free article] [PubMed] [Google Scholar]
- Burr B., Burr F. A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet. 1991 Feb;7(2):55–60. doi: 10.1016/0168-9525(91)90232-F. [DOI] [PubMed] [Google Scholar]
- Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
- Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
- Dietrich W. F., Radany E. H., Smith J. S., Bishop J. M., Hanahan D., Lander E. S. Genome-wide search for loss of heterozygosity in transgenic mouse tumors reveals candidate tumor suppressor genes on chromosomes 9 and 16. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9451–9455. doi: 10.1073/pnas.91.20.9451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estoup A., Presa P., Krieg F., Vaiman D., Guyomard R. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity (Edinb) 1993 Nov;71(Pt 5):488–496. doi: 10.1038/hdy.1993.167. [DOI] [PubMed] [Google Scholar]
- Georges M., Lathrop M., Hilbert P., Marcotte A., Schwers A., Swillens S., Vassart G., Hanset R. On the use of DNA fingerprints for linkage studies in cattle. Genomics. 1990 Mar;6(3):461–474. doi: 10.1016/0888-7543(90)90476-b. [DOI] [PubMed] [Google Scholar]
- Howe H B. Crossing over and Nuclear Passing in Neurospora Crassa. Genetics. 1956 Jul;41(4):610–622. doi: 10.1093/genetics/41.4.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
- Johnson K. R., Wright J. E., Jr, May B. Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics. 1987 Aug;116(4):579–591. doi: 10.1093/genetics/116.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julier C., de Gouyon B., Georges M., Guénet J. L., Nakamura Y., Avner P., Lathrop G. M. Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4585–4589. doi: 10.1073/pnas.87.12.4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kido Y., Aono M., Yamaki T., Matsumoto K., Murata S., Saneyoshi M., Okada N. Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2326–2330. doi: 10.1073/pnas.88.6.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knapik E. W., Goodman A., Atkinson O. S., Roberts C. T., Shiozawa M., Sim C. U., Weksler-Zangen S., Trolliet M. R., Futrell C., Innes B. A. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development. 1996 Dec;123:451–460. doi: 10.1242/dev.123.1.451. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Lyons L. A., Laughlin T. F., Copeland N. G., Jenkins N. A., Womack J. E., O'Brien S. J. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet. 1997 Jan;15(1):47–56. doi: 10.1038/ng0197-47. [DOI] [PubMed] [Google Scholar]
- Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics. 1995 Jul;140(3):1105–1109. doi: 10.1093/genetics/140.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morizot D. C., Wright D. A., Siciliano M. J. Three linked enzyme loci in fishes: implications in the evolution of vertebrate chromosomes. Genetics. 1977 Jul;86(3):645–656. doi: 10.1093/genetics/86.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohno S., Atkin N. B. Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma. 1966;18(3):455–466. doi: 10.1007/BF00332549. [DOI] [PubMed] [Google Scholar]
- Parsons J. E., Thorgaard G. H. Production of androgenetic diploid rainbow trout. J Hered. 1985 May-Jun;76(3):177–181. doi: 10.1093/oxfordjournals.jhered.a110060. [DOI] [PubMed] [Google Scholar]
- Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
- Scheerer P. D., Thorgaard G. H., Allendorf F. W. Genetic analysis of androgenetic rainbow trout. J Exp Zool. 1991 Dec;260(3):382–390. doi: 10.1002/jez.1402600312. [DOI] [PubMed] [Google Scholar]
- Schäfer R., Zischler H., Birsner U., Becker A., Epplen J. T. Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis. 1988 Aug;9(8):369–374. doi: 10.1002/elps.1150090804. [DOI] [PubMed] [Google Scholar]
- Shin H. S., Bargiello T. A., Clark B. T., Jackson F. R., Young M. W. An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature. 1985 Oct 3;317(6036):445–448. doi: 10.1038/317445a0. [DOI] [PubMed] [Google Scholar]
- Spruell P., Thorgaard G. H. SINE sequences detect DNA fingerprints in salmonid fishes. Heredity (Edinb) 1996 Apr;76(Pt 4):317–324. doi: 10.1038/hdy.1996.49. [DOI] [PubMed] [Google Scholar]
- Stadler D R. Double Crossing over in Neurospora. Genetics. 1956 Jul;41(4):623–630. doi: 10.1093/genetics/41.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streisinger G., Singer F., Walker C., Knauber D., Dower N. Segregation analyses and gene-centromere distances in zebrafish. Genetics. 1986 Feb;112(2):311–319. doi: 10.1093/genetics/112.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasaki N., Park L., Kaeriyama M., Gharrett A. J., Okada N. Characterization of species-specifically amplified SINEs in three salmonid species--chum salmon, pink salmon, and kokanee: the local environment of the genome may be important for the generation of a dominant source gene at a newly retroposed locus. J Mol Evol. 1996 Feb;42(2):103–116. doi: 10.1007/BF02198835. [DOI] [PubMed] [Google Scholar]
- Thorgaard G. H., Allendorf F. W., Knudsen K. L. Gene-Centromere Mapping in Rainbow Trout: High Interference over Long Map Distances. Genetics. 1983 Apr;103(4):771–783. doi: 10.1093/genetics/103.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorgaard G. H. Heteromorphic sex chromosomes in male rainbow trout. Science. 1977 May 20;196(4292):900–902. doi: 10.1126/science.860122. [DOI] [PubMed] [Google Scholar]
- Vassart G., Georges M., Monsieur R., Brocas H., Lequarre A. S., Christophe D. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science. 1987 Feb 6;235(4789):683–684. doi: 10.1126/science.2880398. [DOI] [PubMed] [Google Scholar]
- Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wada H., Naruse K., Shimada A., Shima A. Genetic linkage map of a fish, the Japanese medaka Oryzias latipes. Mol Mar Biol Biotechnol. 1995 Sep;4(3):269–274. [PubMed] [Google Scholar]
- Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. E., Jr, Johnson K., Hollister A., May B. Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonid genomes. Isozymes Curr Top Biol Med Res. 1983;10:239–260. [PubMed] [Google Scholar]