Skip to main content
Genetics logoLink to Genetics
. 1998 Feb;148(2):867–876. doi: 10.1093/genetics/148.2.867

Higher frequency of concerted evolutionary events in rodents than in man at the polyubiquitin gene VNTR locus.

M Nenoi 1, K Mita 1, S Ichimura 1, A Kawano 1
PMCID: PMC1459823  PMID: 9504932

Abstract

The polyubiquitin gene is an evolutionarily conserved eukaryotic gene, encoding tandemly repeated multiple ubiquitins, and is considered to be subject to concerted evolution. Here, we present the nucleotide sequences of new alleles of the polyubiquitin gene UbC in humans and CHUB2 in Chinese hamster, which encode a different number of ubiquitin units from those of previously reported genes. And we analyze the concerted evolution of these genes on the basis of their orthologous relationship. That the mean of the synonymous sequence difference Ks which is defined as the number of synonymous substitution relative to the total number of synonymous sites, within the UbC and CHUB2 genes (0.192 +/- 0.096) is significantly less than Ks between these genes (0.602 +/- 0.057) provides direct evidence for concerted evolution. Moreover, it also appears that concerted evolutionary events have been much more frequent in CHUB2 than in UbC, because Ks within CHUB2 (0.022 +/- 0.018) is much less than that within UbC (0.362 +/- 0.192). By a numerical simulation, postulating that the major mechanism of concerted evolution in polyubiquitin genes is unequal crossing over, we estimated the frequency of concerted evolutionary events of CHUB2 at 3.3 x 10(-5) per year and that of UbC at no more than 5.0 x 10(-7) per year.

Full Text

The Full Text of this article is available as a PDF (230.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. T., Board P. G. The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. Nucleic Acids Res. 1987 Jan 26;15(2):443–463. doi: 10.1093/nar/15.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker R. T., Board P. G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 1991 Mar 11;19(5):1035–1040. doi: 10.1093/nar/19.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker R. T., Board P. G. Unequal crossover generates variation in ubiquitin coding unit number at the human UbC polyubiquitin locus. Am J Hum Genet. 1989 Apr;44(4):534–542. [PMC free article] [PubMed] [Google Scholar]
  4. Black J. A., Gibson D. Neutral evolution and immunoglobulin diversity. Nature. 1974 Jul 26;250(464):327–328. doi: 10.1038/250327a0. [DOI] [PubMed] [Google Scholar]
  5. Board P. G., Coggan M., Baker R. T., Vuust J., Webb G. C. Localization of the human UBC polyubiquitin gene to chromosome band 12q24.3. Genomics. 1992 Apr;12(4):639–642. doi: 10.1016/0888-7543(92)90287-3. [DOI] [PubMed] [Google Scholar]
  6. Bregman D. B., Halaban R., van Gool A. J., Henning K. A., Friedberg E. C., Warren S. L. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11586–11590. doi: 10.1073/pnas.93.21.11586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Z. J., Parent L., Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell. 1996 Mar 22;84(6):853–862. doi: 10.1016/s0092-8674(00)81064-8. [DOI] [PubMed] [Google Scholar]
  8. Ciechanover A., Schwartz A. L. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 1994 Feb;8(2):182–191. doi: 10.1096/fasebj.8.2.8119489. [DOI] [PubMed] [Google Scholar]
  9. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  10. Einspanier R., Sharma H. S., Scheit K. H. Cloning and sequence analysis of a cDNA encoding poly-ubiquitin in human ovarian granulosa cells. Biochem Biophys Res Commun. 1987 Sep 15;147(2):581–587. doi: 10.1016/0006-291x(87)90970-3. [DOI] [PubMed] [Google Scholar]
  11. Hayashi T., Noga M., Matsuda M. Nucleotide sequence and expression of the rat polyubiquitin mRNA. Biochim Biophys Acta. 1994 Jun 21;1218(2):232–234. doi: 10.1016/0167-4781(94)90020-5. [DOI] [PubMed] [Google Scholar]
  12. Hicke L., Riezman H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell. 1996 Jan 26;84(2):277–287. doi: 10.1016/s0092-8674(00)80982-4. [DOI] [PubMed] [Google Scholar]
  13. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439. doi: 10.1146/annurev.genet.30.1.405. [DOI] [PubMed] [Google Scholar]
  14. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  15. Keeling P. J., Doolittle W. F. Concerted evolution in protists: recent homogenization of a polyubiquitin gene in Trichomonas vaginalis. J Mol Evol. 1995 Nov;41(5):556–562. doi: 10.1007/BF00175813. [DOI] [PubMed] [Google Scholar]
  16. Kimura M., Ota T. On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol. 1972 Dec 29;2(1):87–90. doi: 10.1007/BF01653945. [DOI] [PubMed] [Google Scholar]
  17. Mita K., Ichimura S., Nenoi M. Essential factors determining codon usage in ubiquitin genes. J Mol Evol. 1991 Sep;33(3):216–225. doi: 10.1007/BF02100672. [DOI] [PubMed] [Google Scholar]
  18. Miyata T., Yasunaga T. Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol. 1980 Sep;16(1):23–36. doi: 10.1007/BF01732067. [DOI] [PubMed] [Google Scholar]
  19. Miyata T., Yasunaga T., Nishida T. Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7328–7332. doi: 10.1073/pnas.77.12.7328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakamura Y., Carlson M., Krapcho K., Kanamori M., White R. New approach for isolation of VNTR markers. Am J Hum Genet. 1988 Dec;43(6):854–859. [PMC free article] [PubMed] [Google Scholar]
  21. Nenoi M., Mita K., Ichimura S., Cartwright I. L. Novel structure of a Chinese hamster polyubiquitin gene. Biochim Biophys Acta. 1994 Feb 16;1204(2):271–278. doi: 10.1016/0167-4838(94)90018-3. [DOI] [PubMed] [Google Scholar]
  22. Nenoi M., Mita K., Ichimura S., Cartwright I. L., Takahashi E., Yamauchi M., Tsuji H. Heterogeneous structure of the polyubiquitin gene UbC of HeLa S3 cells. Gene. 1996 Oct 10;175(1-2):179–185. doi: 10.1016/0378-1119(96)00145-x. [DOI] [PubMed] [Google Scholar]
  23. Nenoi M., Mita K., Ichimura S. Evolutionarily conserved structure of the 3' non-translated region of a Chinese hamster polyubiquitin gene. Biochim Biophys Acta. 1992 Apr 6;1130(3):247–252. doi: 10.1016/0167-4781(92)90436-4. [DOI] [PubMed] [Google Scholar]
  24. Ohta T. Simple model for treating evolution of multigene families. Nature. 1976 Sep 2;263(5572):74–76. doi: 10.1038/263074a0. [DOI] [PubMed] [Google Scholar]
  25. Sharp P. M., Li W. H. Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J Mol Evol. 1987;25(1):58–64. doi: 10.1007/BF02100041. [DOI] [PubMed] [Google Scholar]
  26. Strachan T., Webb D., Dover G. A. Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J. 1985 Jul;4(7):1701–1708. doi: 10.1002/j.1460-2075.1985.tb03839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tan Y., Bishoff S. T., Riley M. A. Ubiquitins revisited: further examples of within- and between-locus concerted evolution. Mol Phylogenet Evol. 1993 Dec;2(4):351–360. doi: 10.1006/mpev.1993.1035. [DOI] [PubMed] [Google Scholar]
  28. Vrana P. B., Wheeler W. C. Molecular evolution and phylogenetic utility of the polyubiquitin locus in mammals and higher vertebrates. Mol Phylogenet Evol. 1996 Oct;6(2):259–269. doi: 10.1006/mpev.1996.0075. [DOI] [PubMed] [Google Scholar]
  29. Webb G. C., Baker R. T., Fagan K., Board P. G. Localization of the human UbB polyubiquitin gene to chromosome band 17p11.1-17p12. Am J Hum Genet. 1990 Feb;46(2):308–315. [PMC free article] [PubMed] [Google Scholar]
  30. Wiborg O., Pedersen M. S., Wind A., Berglund L. E., Marcker K. A., Vuust J. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 1985 Mar;4(3):755–759. doi: 10.1002/j.1460-2075.1985.tb03693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES