Skip to main content
Genetics logoLink to Genetics
. 1998 Feb;148(2):559–569. doi: 10.1093/genetics/148.2.559

The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein.

Y Chantrel 1, M Gaisne 1, C Lions 1, J Verdière 1
PMCID: PMC1459824  PMID: 9504906

Abstract

We report here that Hap1p (originally named Cyp1p) has an essential function in anaerobic or heme-deficient growth. Analysis of intragenic revertants shows that this function depends on the amino acid preceding the first cysteine residue of the DNA-binding domain of Hap1p. Selection of recessive extragenic suppressors of a hap1-hem1- strain allowed the identification, cloning, and molecular analysis of ASC1 (Cyp1 Absence of growth Supressor). The sequence of ASC1 reveals that its ORF is interrupted by an intron that shelters the U24 snoRNA. Deletion of the intron, inactivation of the ORF, and molecular localization of the mutations show unambiguously that it is the protein and not the snoRNA that is involved in the suppressor phenotype. ASC1, which is constitutively transcribed, encodes an abundant, cytoplasmically localized 35-kD protein that belongs to the WD repeat family, which is found in a large variety of eucaryotic organisms. Polysome profile analysis supports the involvement of this protein in translation. We propose that the absence of functional Asc1p allows the growth of hap1-hem1- cells by reducing the efficiency of translation. Based on sequence comparisons, we discuss the possibility that the protein intervenes in a kinase-dependent signal transduction pathway involved in this last function.

Full Text

The Full Text of this article is available as a PDF (349.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  2. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  3. Amillet J. M., Buisson N., Labbe-Bois R. Positive and negative elements involved in the differential regulation by heme and oxygen of the HEM13 gene (coproporphyrinogen oxidase) in Saccharomyces cerevisiae. Curr Genet. 1995 Nov;28(6):503–511. doi: 10.1007/BF00518161. [DOI] [PubMed] [Google Scholar]
  4. Berkower C., Loayza D., Michaelis S. Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae. Mol Biol Cell. 1994 Nov;5(11):1185–1198. doi: 10.1091/mbc.5.11.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonneaud N., Ozier-Kalogeropoulos O., Li G. Y., Labouesse M., Minvielle-Sebastia L., Lacroute F. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast. 1991 Aug-Sep;7(6):609–615. doi: 10.1002/yea.320070609. [DOI] [PubMed] [Google Scholar]
  6. Caffarelli E., Fatica A., Prislei S., De Gregorio E., Fragapane P., Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996 Mar 1;15(5):1121–1131. [PMC free article] [PubMed] [Google Scholar]
  7. Chen D. C., Yang B. C., Kuo T. T. One-step transformation of yeast in stationary phase. Curr Genet. 1992 Jan;21(1):83–84. doi: 10.1007/BF00318659. [DOI] [PubMed] [Google Scholar]
  8. Claisse M. L., Péré-Aubert G. A., Clavilier L. P., Slonimski P. P. Méthode d'estimation de la concentration des cytochromes dans les cellules entières de levure. Eur J Biochem. 1970 Nov;16(3):430–438. doi: 10.1111/j.1432-1033.1970.tb01098.x. [DOI] [PubMed] [Google Scholar]
  9. Creusot F., Verdière J., Gaisne M., Slonimski P. P. CYP1 (HAP1) regulator of oxygen-dependent gene expression in yeast. I. Overall organization of the protein sequence displays several novel structural domains. J Mol Biol. 1988 Nov 20;204(2):263–276. doi: 10.1016/0022-2836(88)90574-8. [DOI] [PubMed] [Google Scholar]
  10. Deckert J., Perini R., Balasubramanian B., Zitomer R. S. Multiple elements and auto-repression regulate Rox1, a repressor of hypoxic genes in Saccharomyces cerevisiae. Genetics. 1995 Mar;139(3):1149–1158. doi: 10.1093/genetics/139.3.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Defranoux N., Gaisne M., Verdière J. Functional analysis of the zinc cluster domain of the CYP1 (HAP1) complex regulator in heme-sufficient and heme-deficient yeast cells. Mol Gen Genet. 1994 Mar;242(6):699–707. doi: 10.1007/BF00283425. [DOI] [PubMed] [Google Scholar]
  12. Fytlovich S., Gervais M., Agrimonti C., Guiard B. Evidence for an interaction between the CYP1(HAP1) activator and a cellular factor during heme-dependent transcriptional regulation in the yeast Saccharomyces cerevisiae. EMBO J. 1993 Mar;12(3):1209–1218. doi: 10.1002/j.1460-2075.1993.tb05762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hawthorne D. C. The selection of nonsense suppressors in yeast. Mutat Res. 1969 Mar-Apr;7(2):187–197. doi: 10.1016/0027-5107(69)90030-x. [DOI] [PubMed] [Google Scholar]
  14. Helser T. L., Baan R. A., Dahlberg A. E. Characterization of a 40S ribosomal subunit complex in polyribosomes of Saccharomyces cerevisiae treated with cycloheximide. Mol Cell Biol. 1981 Jan;1(1):51–57. doi: 10.1128/mcb.1.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  16. Imai Y., Suzuki Y., Tohyama M., Wanaka A., Takagi T. Cloning and expression of a neural differentiation-associated gene, p205, in the embryonal carcinoma cell line P19 and in the developing mouse. Brain Res Mol Brain Res. 1994 Jul;24(1-4):313–319. doi: 10.1016/0169-328x(94)90144-9. [DOI] [PubMed] [Google Scholar]
  17. Ishida S., Takahashi Y., Nagata T. Isolation of cDNA of an auxin-regulated gene encoding a G protein beta subunit-like protein from tobacco BY-2 cells. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11152–11156. doi: 10.1073/pnas.90.23.11152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keng T. HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jun;12(6):2616–2623. doi: 10.1128/mcb.12.6.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim K. S., Guarente L. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAPI. Nature. 1989 Nov 9;342(6246):200–203. doi: 10.1038/342200a0. [DOI] [PubMed] [Google Scholar]
  20. Kiss-László Z., Henry Y., Bachellerie J. P., Caizergues-Ferrer M., Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996 Jun 28;85(7):1077–1088. doi: 10.1016/s0092-8674(00)81308-2. [DOI] [PubMed] [Google Scholar]
  21. Krüger D., Koch J., Barthelmess I. B. cpc-2, a new locus involved in general control of amino acid synthetic enzymes in Neurospora crassa. Curr Genet. 1990 Oct;18(3):211–215. doi: 10.1007/BF00318383. [DOI] [PubMed] [Google Scholar]
  22. Kuo W. N., Jones D. L., Ku T. W., Weeks K. D., Jordon P. M., Dopson N. C. Immunoreactivity of PKC gammalambda and RACK1 in baker's yeast, lobster and wheat germ. Biochem Mol Biol Int. 1995 Aug;36(5):957–963. [PubMed] [Google Scholar]
  23. Maxwell E. S., Fournier M. J. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934. doi: 10.1146/annurev.bi.64.070195.004341. [DOI] [PubMed] [Google Scholar]
  24. Mougneau E., Altare F., Wakil A. E., Zheng S., Coppola T., Wang Z. E., Waldmann R., Locksley R. M., Glaichenhaus N. Expression cloning of a protective Leishmania antigen. Science. 1995 Apr 28;268(5210):563–566. doi: 10.1126/science.7725103. [DOI] [PubMed] [Google Scholar]
  25. Müller F., Krüger D., Sattlegger E., Hoffmann B., Ballario P., Kanaan M., Barthelmess I. B. The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility. Mol Gen Genet. 1995 Jul 28;248(2):162–173. doi: 10.1007/BF02190797. [DOI] [PubMed] [Google Scholar]
  26. Nasmyth K. A., Reed S. I. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2119–2123. doi: 10.1073/pnas.77.4.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  28. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 1983;101:228–245. doi: 10.1016/0076-6879(83)01017-4. [DOI] [PubMed] [Google Scholar]
  29. Petitjean A., Bonneaud N., Lacroute F. The duplicated Saccharomyces cerevisiae gene SSM1 encodes a eucaryotic homolog of the eubacterial and archaebacterial L1 ribosomal proteins. Mol Cell Biol. 1995 Sep;15(9):5071–5081. doi: 10.1128/mcb.15.9.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pfeifer K., Prezant T., Guarente L. Yeast HAP1 activator binds to two upstream activation sites of different sequence. Cell. 1987 Apr 10;49(1):19–27. doi: 10.1016/0092-8674(87)90751-3. [DOI] [PubMed] [Google Scholar]
  31. Qu L. H., Henry Y., Nicoloso M., Michot B., Azum M. C., Renalier M. H., Caizergues-Ferrer M., Bachellerie J. P. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 1995 Jul 25;23(14):2669–2676. doi: 10.1093/nar/23.14.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ron D., Chen C. H., Caldwell J., Jamieson L., Orr E., Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):839–843. doi: 10.1073/pnas.91.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  36. Turi T. G., Loper J. C. Multiple regulatory elements control expression of the gene encoding the Saccharomyces cerevisiae cytochrome P450, lanosterol 14 alpha-demethylase (ERG11). J Biol Chem. 1992 Jan 25;267(3):2046–2056. [PubMed] [Google Scholar]
  37. Ushinsky S. C., Keng T. A novel allele of HAP1 causes uninducible expression of HEM13 in Saccharomyces cerevisiae. Genetics. 1994 Mar;136(3):819–831. doi: 10.1093/genetics/136.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Verdière J., Creusot F., Guarente L., Slonimski P. P. The overproducing CYP1 and the underproducing hap1 mutations are alleles of the same gene which regulates in trans the expression of the structural genes encoding iso-cytochromes c. Curr Genet. 1986;10(5):339–342. doi: 10.1007/BF00418404. [DOI] [PubMed] [Google Scholar]
  39. Verdière J., Gaisne M., Guiard B., Defranoux N., Slonimski P. P. CYP1 (HAP1) regulator of oxygen-dependent gene expression in yeast. II. Missense mutation suggests alternative Zn fingers as discriminating agents of gene control. J Mol Biol. 1988 Nov 20;204(2):277–282. doi: 10.1016/0022-2836(88)90575-x. [DOI] [PubMed] [Google Scholar]
  40. Verdière J., Gaisne M., Labbe-Bois R. CYP1 (HAP1) is a determinant effector of alternative expression of heme-dependent transcribed genes in yeast [corrected]. Mol Gen Genet. 1991 Aug;228(1-2):300–306. doi: 10.1007/BF00282480. [DOI] [PubMed] [Google Scholar]
  41. Zhang L., Guarente L. HAP1 is nuclear but is bound to a cellular factor in the absence of heme. J Biol Chem. 1994 May 20;269(20):14643–14647. [PubMed] [Google Scholar]
  42. Zitomer R. S., Lowry C. V. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev. 1992 Mar;56(1):1–11. doi: 10.1128/mr.56.1.1-11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES