Skip to main content
Genetics logoLink to Genetics
. 1998 Feb;148(2):703–717. doi: 10.1093/genetics/148.2.703

An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans.

H A Tissenbaum 1, G Ruvkun 1
PMCID: PMC1459840  PMID: 9504918

Abstract

Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.

Full Text

The Full Text of this article is available as a PDF (190.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Accili D., Drago J., Lee E. J., Johnson M. D., Cool M. H., Salvatore P., Asico L. D., José P. A., Taylor S. I., Westphal H. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996 Jan;12(1):106–109. doi: 10.1038/ng0196-106. [DOI] [PubMed] [Google Scholar]
  2. Bonfini L., Migliaccio E., Pelicci G., Lanfrancone L., Pelicci P. G. Not all Shc's roads lead to Ras. Trends Biochem Sci. 1996 Jul;21(7):257–261. [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassada R. C., Russell R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. doi: 10.1016/0012-1606(75)90109-8. [DOI] [PubMed] [Google Scholar]
  5. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  6. Dorman J. B., Albinder B., Shroyer T., Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 1995 Dec;141(4):1399–1406. doi: 10.1093/genetics/141.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ewbank J. J., Barnes T. M., Lakowski B., Lussier M., Bussey H., Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997 Feb 14;275(5302):980–983. doi: 10.1126/science.275.5302.980. [DOI] [PubMed] [Google Scholar]
  8. Friedman D. B., Johnson T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988 Jan;118(1):75–86. doi: 10.1093/genetics/118.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friedman D. B., Johnson T. E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol. 1988 Jul;43(4):B102–B109. doi: 10.1093/geronj/43.4.b102. [DOI] [PubMed] [Google Scholar]
  10. Gems D., Riddle D. L. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature. 1996 Feb 22;379(6567):723–725. doi: 10.1038/379723a0. [DOI] [PubMed] [Google Scholar]
  11. Golden J. W., Riddle D. L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol. 1984 Apr;102(2):368–378. doi: 10.1016/0012-1606(84)90201-x. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb S., Ruvkun G. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics. 1994 May;137(1):107–120. doi: 10.1093/genetics/137.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guarente L. Do changes in chromosomes cause aging? Cell. 1996 Jul 12;86(1):9–12. doi: 10.1016/s0092-8674(00)80072-0. [DOI] [PubMed] [Google Scholar]
  14. Hengartner M. O., Ellis R. E., Horvitz H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature. 1992 Apr 9;356(6369):494–499. doi: 10.1038/356494a0. [DOI] [PubMed] [Google Scholar]
  15. Hobert O., Mori I., Yamashita Y., Honda H., Ohshima Y., Liu Y., Ruvkun G. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron. 1997 Aug;19(2):345–357. doi: 10.1016/s0896-6273(00)80944-7. [DOI] [PubMed] [Google Scholar]
  16. Hodgkin J., Barnes T. M. More is not better: brood size and population growth in a self-fertilizing nematode. Proc Biol Sci. 1991 Oct 22;246(1315):19–24. doi: 10.1098/rspb.1991.0119. [DOI] [PubMed] [Google Scholar]
  17. Joshi R. L., Lamothe B., Cordonnier N., Mesbah K., Monthioux E., Jami J., Bucchini D. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 1996 Apr 1;15(7):1542–1547. [PMC free article] [PubMed] [Google Scholar]
  18. Kahn C. R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes. 1994 Aug;43(8):1066–1084. doi: 10.2337/diab.43.8.1066. [DOI] [PubMed] [Google Scholar]
  19. Kennedy B. K., Austriaco N. R., Jr, Zhang J., Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995 Feb 10;80(3):485–496. doi: 10.1016/0092-8674(95)90499-9. [DOI] [PubMed] [Google Scholar]
  20. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  21. Kenyon C. Ponce d'elegans: genetic quest for the fountain of youth. Cell. 1996 Feb 23;84(4):501–504. doi: 10.1016/s0092-8674(00)81024-7. [DOI] [PubMed] [Google Scholar]
  22. Kimura K. D., Tissenbaum H. A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997 Aug 15;277(5328):942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  23. Klass M. R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev. 1983 Jul-Aug;22(3-4):279–286. doi: 10.1016/0047-6374(83)90082-9. [DOI] [PubMed] [Google Scholar]
  24. Klass M., Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature. 1976 Apr 8;260(5551):523–525. doi: 10.1038/260523a0. [DOI] [PubMed] [Google Scholar]
  25. Krook A., Brueton L., O'Rahilly S. Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet. 1993 Jul 31;342(8866):277–278. doi: 10.1016/0140-6736(93)91820-c. [DOI] [PubMed] [Google Scholar]
  26. Lakowski B., Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 1996 May 17;272(5264):1010–1013. doi: 10.1126/science.272.5264.1010. [DOI] [PubMed] [Google Scholar]
  27. Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Larsen P. L., Albert P. S., Riddle D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics. 1995 Apr;139(4):1567–1583. doi: 10.1093/genetics/139.4.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Malone E. A., Inoue T., Thomas J. H. Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics. 1996 Jul;143(3):1193–1205. doi: 10.1093/genetics/143.3.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Malone E. A., Thomas J. H. A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics. 1994 Mar;136(3):879–886. doi: 10.1093/genetics/136.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Masoro E. J., Shimokawa I., Yu B. P. Retardation of the aging processes in rats by food restriction. Ann N Y Acad Sci. 1991;621:337–352. doi: 10.1111/j.1749-6632.1991.tb16990.x. [DOI] [PubMed] [Google Scholar]
  32. Morris J. Z., Tissenbaum H. A., Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996 Aug 8;382(6591):536–539. doi: 10.1038/382536a0. [DOI] [PubMed] [Google Scholar]
  33. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  34. Ortiz-Lopez R., Li H., Su J., Goytia V., Towbin J. A. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation. 1997 May 20;95(10):2434–2440. doi: 10.1161/01.cir.95.10.2434. [DOI] [PubMed] [Google Scholar]
  35. Perkins L. A., Hedgecock E. M., Thomson J. N., Culotti J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol. 1986 Oct;117(2):456–487. doi: 10.1016/0012-1606(86)90314-3. [DOI] [PubMed] [Google Scholar]
  36. Quiring R., Walldorf U., Kloter U., Gehring W. J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science. 1994 Aug 5;265(5173):785–789. doi: 10.1126/science.7914031. [DOI] [PubMed] [Google Scholar]
  37. Ren P., Lim C. S., Johnsen R., Albert P. S., Pilgrim D., Riddle D. L. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science. 1996 Nov 22;274(5291):1389–1391. doi: 10.1126/science.274.5291.1389. [DOI] [PubMed] [Google Scholar]
  38. Riddle D. L., Swanson M. M., Albert P. S. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. doi: 10.1038/290668a0. [DOI] [PubMed] [Google Scholar]
  39. Schackwitz W. S., Inoue T., Thomas J. H. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron. 1996 Oct;17(4):719–728. doi: 10.1016/s0896-6273(00)80203-2. [DOI] [PubMed] [Google Scholar]
  40. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Swanson M. M., Riddle D. L. Critical periods in the development of the Caenorhabditis elegans dauer larva. Dev Biol. 1981 May;84(1):27–40. doi: 10.1016/0012-1606(81)90367-5. [DOI] [PubMed] [Google Scholar]
  42. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomas J. H. Chemosensory regulation of development in C. elegans. Bioessays. 1993 Dec;15(12):791–797. doi: 10.1002/bies.950151204. [DOI] [PubMed] [Google Scholar]
  44. Van Voorhies W. A. Production of sperm reduces nematode lifespan. Nature. 1992 Dec 3;360(6403):456–458. doi: 10.1038/360456a0. [DOI] [PubMed] [Google Scholar]
  45. Vanfleteren J. R., De Vreese A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J. 1995 Oct;9(13):1355–1361. doi: 10.1096/fasebj.9.13.7557026. [DOI] [PubMed] [Google Scholar]
  46. Vanfleteren J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 1993 Jun 1;292(Pt 2):605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vowels J. J., Thomas J. H. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics. 1992 Jan;130(1):105–123. doi: 10.1093/genetics/130.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wertheimer E., Lu S. P., Backeljauw P. F., Davenport M. L., Taylor S. I. Homozygous deletion of the human insulin receptor gene results in leprechaunism. Nat Genet. 1993 Sep;5(1):71–73. doi: 10.1038/ng0993-71. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES