Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 1;24(13):2488–2497. doi: 10.1093/nar/24.13.2488

The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA.

A J Doherty 1, L C Serpell 1, C P Ponting 1
PMCID: PMC145986  PMID: 8692686

Abstract

One, two or four copies of the 'helix-hairpin-helix' (HhH) DNA-binding motif are predicted to occur in 14 homologous families of proteins. The predicted DNA-binding function of this motif is shown to be consistent with the crystallographic structure of rat polymerase beta, complexed with DNA template-primer [Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. and Kraut, J. (1994) Science 264, 1891-1903] and with biochemical data. Five crystal structures of predicted HhH motifs are currently known: two from rat pol beta and one each in endonuclease III, AlkA and the 5' nuclease domain of Taq pol I. These motifs are more structurally similar to each other than to any other structure in current databases, including helix-turn-helix motifs. The clustering of the five HhH structures separately from other bi-helical structures in searches indicates that all members of the 14 families of proteins described herein possess similar HhH structures. By analogy with the rat pol beta structure, it is suggested that each of these HhH motifs bind DNA in a non-sequence-specific manner, via the formation of hydrogen bonds between protein backbone nitrogens and DNA phosphate groups. This type of interaction contrasts with the sequence-specific interactions of other motifs, including helix-turn-helix structures. Additional evidence is provided that alphaherpesvirus virion host shutoff proteins are members of the polymerase I 5'-nuclease and FEN1-like endonuclease gene family, and that a novel HhH-containing DNA-binding domain occurs in the kinesin-like molecule nod, and in other proteins such as cnjB, emb-5 and SPT6.

Full Text

The Full Text of this article is available as a PDF (419.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshar K., Barton N. R., Hawley R. S., Goldstein L. S. DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell. 1995 Apr 7;81(1):129–138. doi: 10.1016/0092-8674(95)90377-1. [DOI] [PubMed] [Google Scholar]
  2. Afshar K., Scholey J., Hawley R. S. Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Cell Biol. 1995 Nov;131(4):833–843. doi: 10.1083/jcb.131.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  4. Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
  5. Barton G. J. An efficient algorithm to locate all locally optimal alignments between two sequences allowing for gaps. Comput Appl Biosci. 1993 Dec;9(6):729–734. doi: 10.1093/bioinformatics/9.6.729. [DOI] [PubMed] [Google Scholar]
  6. Basu A., Kedar P., Wilson S. H., Modak M. J. Active-site modification of mammalian DNA polymerase beta with pyridoxal 5'-phosphate: mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket. Biochemistry. 1989 Jul 25;28(15):6305–6309. doi: 10.1021/bi00441a023. [DOI] [PubMed] [Google Scholar]
  7. Berthomme H., Jacquemont B., Epstein A. The pseudorabies virus host-shutoff homolog gene: nucleotide sequence and comparison with alphaherpesvirus protein counterparts. Virology. 1993 Apr;193(2):1028–1032. doi: 10.1006/viro.1993.1221. [DOI] [PubMed] [Google Scholar]
  8. Bossemeyer D. The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem Sci. 1994 May;19(5):201–205. doi: 10.1016/0968-0004(94)90022-1. [DOI] [PubMed] [Google Scholar]
  9. Carpenter A. T. A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics. 1973 Mar;73(3):393–428. doi: 10.1093/genetics/73.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doherty A. J., Worrall A. F., Connolly B. A. The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: a study using site-directed mutagenesis. J Mol Biol. 1995 Aug 18;251(3):366–377. doi: 10.1006/jmbi.1995.0440. [DOI] [PubMed] [Google Scholar]
  11. Doolittle R. F. Convergent evolution: the need to be explicit. Trends Biochem Sci. 1994 Jan;19(1):15–18. doi: 10.1016/0968-0004(94)90167-8. [DOI] [PubMed] [Google Scholar]
  12. Efimov A. V. Structure of alpha-alpha-hairpins with short connections. Protein Eng. 1991 Feb;4(3):245–250. doi: 10.1093/protein/4.3.245. [DOI] [PubMed] [Google Scholar]
  13. Farrar Y. J., Evans R. K., Beach C. M., Coleman M. S. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: identification of peptides in the DNA binding domain. Biochemistry. 1991 Mar 26;30(12):3075–3082. doi: 10.1021/bi00226a014. [DOI] [PubMed] [Google Scholar]
  14. Gibson T. J., Hyvönen M., Musacchio A., Saraste M., Birney E. PH domain: the first anniversary. Trends Biochem Sci. 1994 Sep;19(9):349–353. doi: 10.1016/0968-0004(94)90108-2. [DOI] [PubMed] [Google Scholar]
  15. Gutman P. D., Minton K. W. Conserved sites in the 5'-3' exonuclease domain of Escherichia coli DNA polymerase. Nucleic Acids Res. 1993 Sep 11;21(18):4406–4407. doi: 10.1093/nar/21.18.4406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harrington J. J., Lieber M. R. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev. 1994 Jun 1;8(11):1344–1355. doi: 10.1101/gad.8.11.1344. [DOI] [PubMed] [Google Scholar]
  17. Harrison S. C. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. doi: 10.1038/353715a0. [DOI] [PubMed] [Google Scholar]
  18. Harrison S. C., Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. [DOI] [PubMed] [Google Scholar]
  19. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hollingsworth H. C., Nossal N. G. Bacteriophage T4 encodes an RNase H which removes RNA primers made by the T4 DNA replication system in vitro. J Biol Chem. 1991 Jan 25;266(3):1888–1897. [PubMed] [Google Scholar]
  21. Husain I., Morton B. S., Beard W. A., Singhal R. K., Prasad R., Wilson S. H., Besterman J. M. Specific inhibition of DNA polymerase beta by its 14 kDa domain: role of single- and double-stranded DNA binding and 5'-phosphate recognition. Nucleic Acids Res. 1995 May 11;23(9):1597–1603. doi: 10.1093/nar/23.9.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Inamine G. S., Dubnau D. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol. 1995 Jun;177(11):3045–3051. doi: 10.1128/jb.177.11.3045-3051.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ishino Y., Takahashi-Fujii A., Uemori T., Imamura M., Kato I., Doi H. The amino acid sequence required for 5' --> 3' exonuclease activity of Bacillus caldotenax DNA polymerase. Protein Eng. 1995 Nov;8(11):1171–1175. doi: 10.1093/protein/8.11.1171. [DOI] [PubMed] [Google Scholar]
  24. Joyce C. M., Fujii D. M., Laks H. S., Hughes C. M., Grindley N. D. Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli. J Mol Biol. 1985 Nov 20;186(2):283–293. doi: 10.1016/0022-2836(85)90105-6. [DOI] [PubMed] [Google Scholar]
  25. Kim Y., Eom S. H., Wang J., Lee D. S., Suh S. W., Steitz T. A. Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17;376(6541):612–616. doi: 10.1038/376612a0. [DOI] [PubMed] [Google Scholar]
  26. Kumar A., Widen S. G., Williams K. R., Kedar P., Karpel R. L., Wilson S. H. Studies of the domain structure of mammalian DNA polymerase beta. Identification of a discrete template binding domain. J Biol Chem. 1990 Feb 5;265(4):2124–2131. [PubMed] [Google Scholar]
  27. Kuo C. F., McRee D. E., Fisher C. L., O'Handley S. F., Cunningham R. P., Tainer J. A. Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science. 1992 Oct 16;258(5081):434–440. doi: 10.1126/science.1411536. [DOI] [PubMed] [Google Scholar]
  28. Liu D., DeRose E. F., Prasad R., Wilson S. H., Mullen G. P. Assignments of 1H, 15N, and 13C resonances for the backbone and side chains of the N-terminal domain of DNA polymerase beta. Determination of the secondary structure and tertiary contacts. Biochemistry. 1994 Aug 16;33(32):9537–9545. doi: 10.1021/bi00198a020. [DOI] [PubMed] [Google Scholar]
  29. Nishiwaki K., Sano T., Miwa J. emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6. Mol Gen Genet. 1993 Jun;239(3):313–322. doi: 10.1007/BF00276929. [DOI] [PubMed] [Google Scholar]
  30. Pak A. S., Everly D. N., Knight K., Read G. S. The virion host shutoff protein of herpes simplex virus inhibits reporter gene expression in the absence of other viral gene products. Virology. 1995 Aug 20;211(2):491–506. doi: 10.1006/viro.1995.1431. [DOI] [PubMed] [Google Scholar]
  31. Pandey V., Modak M. J. Biochemistry of terminal deoxynucleotidyltransferase. Affinity labeling and identification of the deoxynucleoside triphosphate binding domain of terminal deoxynucleotidyltransferase. J Biol Chem. 1988 Mar 15;263(8):3744–3751. [PubMed] [Google Scholar]
  32. Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
  33. Ponting C. P., Kerr I. D. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci. 1996 May;5(5):914–922. doi: 10.1002/pro.5560050513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prasad R., Beard W. A., Wilson S. H. Studies of gapped DNA substrate binding by mammalian DNA polymerase beta. Dependence on 5'-phosphate group. J Biol Chem. 1994 Jul 8;269(27):18096–18101. [PubMed] [Google Scholar]
  35. Rasooly R. S., Zhang P., Tibolla A. K., Hawley R. S. A structure-function analysis of NOD, a kinesin-like protein from Drosophila melanogaster. Mol Gen Genet. 1994 Jan;242(2):145–151. doi: 10.1007/BF00391007. [DOI] [PubMed] [Google Scholar]
  36. Robins P., Pappin D. J., Wood R. D., Lindahl T. Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I. J Biol Chem. 1994 Nov 18;269(46):28535–28538. [PubMed] [Google Scholar]
  37. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  38. Russell R. B., Barton G. J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins. 1992 Oct;14(2):309–323. doi: 10.1002/prot.340140216. [DOI] [PubMed] [Google Scholar]
  39. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  40. Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
  41. Sayers J. R., Eckstein F. A single-strand specific endonuclease activity copurifies with overexpressed T5 D15 exonuclease. Nucleic Acids Res. 1991 Aug 11;19(15):4127–4132. doi: 10.1093/nar/19.15.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  43. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  44. Seeberg E., Eide L., Bjørås M. The base excision repair pathway. Trends Biochem Sci. 1995 Oct;20(10):391–397. doi: 10.1016/s0968-0004(00)89086-6. [DOI] [PubMed] [Google Scholar]
  45. Singhal R. K., Wilson S. H. Short gap-filling synthesis by DNA polymerase beta is processive. J Biol Chem. 1993 Jul 25;268(21):15906–15911. [PubMed] [Google Scholar]
  46. Thayer M. M., Ahern H., Xing D., Cunningham R. P., Tainer J. A. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 1995 Aug 15;14(16):4108–4120. doi: 10.1002/j.1460-2075.1995.tb00083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES