Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 1;24(13):2511–2518. doi: 10.1093/nar/24.13.2511

Genetic regulation of delta-aminolevulinate dehydratase during erythropoiesis.

T R Bishop 1, M W Miller 1, J Beall 1, L I Zon 1, P Dierks 1
PMCID: PMC145987  PMID: 8692689

Abstract

In an effort to understand how the heme biosynthetic pathway is uniquely regulated in erythroid cells, we examined the structure of the gene encoding murine delta-aminolevulinate dehydratase (ALAD; EC4.2.1.24), which is the second enzyme of the pathway. The gene contains two first exons, named 1A and 1B, which are alternatively spliced to exon 2, where the coding region begins. Each first exon has its own promoter. The promoter driving exon 1A expression is TATA-less and contains many GC boxes. In contrast, the exon 1B promoter bears regulatory sequences similar to those found for beta-globin and other erythroid-specific genes. Tissue distribution studies reveal that ALAD mRNA containing axon 1A is ubiquitous, whereas mRNA containing axon 1B is found only in erythroid tissues. This finding, together with our further observation that GATA-1 mRNA levels increase 3-fold during maturation of murine erythroid progenitor cells, may help explain simultaneous 3-fold increases in exon 1B expression. The unexpected result that axon 1A expression also increases 3-fold during CFU-E maturation may be attributable to the action of NF-E2, since there is a potential binding site in a position analogous to the NF-E2 site in the locus control region of the beta-globin gene cluster.

Full Text

The Full Text of this article is available as a PDF (240.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaupain D., Eléouët J. F., Roméo P. H. Initiation of transcription of the erythroid promoter of the porphobilinogen deaminase gene is regulated by a cis-acting sequence around the cap site. Nucleic Acids Res. 1990 Nov 25;18(22):6509–6515. doi: 10.1093/nar/18.22.6509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berk A. J., Sharp P. A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. doi: 10.1016/0092-8674(77)90272-0. [DOI] [PubMed] [Google Scholar]
  3. Bishop T. R., Cohen P. J., Boyer S. H., Noyes A. N., Frelin L. P. Isolation of a rat liver delta-aminolevulinate dehydrase (ALAD) cDNA clone: evidence for unequal ALAD gene dosage among inbred mouse strains. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5568–5572. doi: 10.1073/pnas.83.15.5568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bishop T. R., Frelin L. P., Boyer S. H. Isolation and characterization of a rat delta-aminolevulinate dehydratase processed pseudogene. Genomics. 1990 Aug;7(4):629–632. doi: 10.1016/0888-7543(90)90210-l. [DOI] [PubMed] [Google Scholar]
  5. Bishop T. R., Frelin L. P., Boyer S. H. Nucleotide sequence of rat liver delta-aminolevulinic acid dehydratase cDNA. Nucleic Acids Res. 1986 Dec 22;14(24):10115–10115. doi: 10.1093/nar/14.24.10115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer S. H., Landschulz K. T., Bishop T. R. Patterns of differential gene expression during maturation of erythroid colony forming units. Prog Clin Biol Res. 1987;251:43–54. [PubMed] [Google Scholar]
  7. Charnay P., Treisman R., Mellon P., Chao M., Axel R., Maniatis T. Differences in human alpha- and beta-globin gene expression in mouse erythroleukemia cells: the role of intragenic sequences. Cell. 1984 Aug;38(1):251–263. doi: 10.1016/0092-8674(84)90547-6. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Chretien S., Dubart A., Beaupain D., Raich N., Grandchamp B., Rosa J., Goossens M., Romeo P. H. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U S A. 1988 Jan;85(1):6–10. doi: 10.1073/pnas.85.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  11. Cox T. C., Bawden M. J., Abraham N. G., Bottomley S. S., May B. K., Baker E., Chen L. Z., Sutherland G. R. Erythroid 5-aminolevulinate synthase is located on the X chromosome. Am J Hum Genet. 1990 Jan;46(1):107–111. [PMC free article] [PubMed] [Google Scholar]
  12. Cox T. C., Bawden M. J., Martin A., May B. K. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J. 1991 Jul;10(7):1891–1902. doi: 10.1002/j.1460-2075.1991.tb07715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crossley M., Tsang A. P., Bieker J. J., Orkin S. H. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. J Biol Chem. 1994 Jun 3;269(22):15440–15444. [PubMed] [Google Scholar]
  14. Dailey T. A., Dailey H. A., Meissner P., Prasad A. R. Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Arch Biochem Biophys. 1995 Dec 20;324(2):379–384. doi: 10.1006/abbi.1995.0051. [DOI] [PubMed] [Google Scholar]
  15. Dierks P., van Ooyen A., Cochran M. D., Dobkin C., Reiser J., Weissmann C. Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit beta-globin gene in mouse 3T6 cells. Cell. 1983 Mar;32(3):695–706. doi: 10.1016/0092-8674(83)90055-7. [DOI] [PubMed] [Google Scholar]
  16. Fujita H., Yamamoto M., Yamagami T., Hayashi N., Bishop T. R., De Verneuil H., Yoshinaga T., Shibahara S., Morimoto R., Sassa S. Sequential activation of genes for heme pathway enzymes during erythroid differentiation of mouse Friend virus-transformed erythroleukemia cells. Biochim Biophys Acta. 1991 Nov 11;1090(3):311–316. doi: 10.1016/0167-4781(91)90195-r. [DOI] [PubMed] [Google Scholar]
  17. Fukuda Y., Fujita H., Garbaczewski L., Sassa S. Regulation of beta-globin mRNA accumulation by heme in dimethyl sulfoxide (DMSO)-sensitive and DMSO-resistant murine erythroleukemia cells. Blood. 1994 Mar 15;83(6):1662–1667. [PubMed] [Google Scholar]
  18. Grandchamp B., Beaumont C., de Verneuil H., Nordmann Y. Accumulation of porphobilinogen deaminase, uroporphyrinogen decarboxylase, and alpha- and beta-globin mRNAs during differentiation of mouse erythroleukemic cells. Effects of succinylacetone. J Biol Chem. 1985 Aug 15;260(17):9630–9635. [PubMed] [Google Scholar]
  19. Guo G. G., Gu M., Etlinger J. D. 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase. J Biol Chem. 1994 Apr 29;269(17):12399–12402. [PubMed] [Google Scholar]
  20. Harrison P. R., Rutherford T., Conkie D., Affara N., Sommerville J., Hissey P., Paul J. Analysis of erythroid differentiation in Friend cells using noninducible variants. Cell. 1978 May;14(1):61–70. doi: 10.1016/0092-8674(78)90301-x. [DOI] [PubMed] [Google Scholar]
  21. Ishida N., Fujita H., Fukuda Y., Noguchi T., Doss M., Kappas A., Sassa S. Cloning and expression of the defective genes from a patient with delta-aminolevulinate dehydratase porphyria. J Clin Invest. 1992 May;89(5):1431–1437. doi: 10.1172/JCI115732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaya A. H., Plewinska M., Wong D. M., Desnick R. J., Wetmur J. G. Human delta-aminolevulinate dehydratase (ALAD) gene: structure and alternative splicing of the erythroid and housekeeping mRNAs. Genomics. 1994 Jan 15;19(2):242–248. doi: 10.1006/geno.1994.1054. [DOI] [PubMed] [Google Scholar]
  23. Kohno H., Furukawa T., Yoshinaga T., Tokunaga R., Taketani S. Coproporphyrinogen oxidase. Purification, molecular cloning, and induction of mRNA during erythroid differentiation. J Biol Chem. 1993 Oct 5;268(28):21359–21363. [PubMed] [Google Scholar]
  24. Landschulz K. T., Boyer S. H., Noyes A. N., Rogers O. C., Frelin L. P. Onset of erythropoietin response in murine erythroid colony-forming units: assignment to early S-phase in a specific cell generation. Blood. 1992 May 15;79(10):2749–2758. [PubMed] [Google Scholar]
  25. Landschulz K. T., Noyes A. N., Rogers O., Boyer S. H. Erythropoietin receptors on murine erythroid colony-forming units: natural history. Blood. 1989 May 1;73(6):1476–1486. [PubMed] [Google Scholar]
  26. Loh E. Y., Elliott J. F., Cwirla S., Lanier L. L., Davis M. M. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science. 1989 Jan 13;243(4888):217–220. doi: 10.1126/science.2463672. [DOI] [PubMed] [Google Scholar]
  27. Lowrey C. H., Bodine D. M., Nienhuis A. W. Mechanism of DNase I hypersensitive site formation within the human globin locus control region. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1143–1147. doi: 10.1073/pnas.89.3.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maguire D. J., Day A. R., Borthwick I. A., Srivastava G., Wigley P. L., May B. K., Elliott W. H. Nucleotide sequence of the chicken 5-aminolevulinate synthase gene. Nucleic Acids Res. 1986 Feb 11;14(3):1379–1391. doi: 10.1093/nar/14.3.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  30. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mignotte V., Eleouet J. F., Raich N., Romeo P. H. Cis- and trans-acting elements involved in the regulation of the erythroid promoter of the human porphobilinogen deaminase gene. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6548–6552. doi: 10.1073/pnas.86.17.6548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Myers R. M., Larin Z., Maniatis T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science. 1985 Dec 13;230(4731):1242–1246. doi: 10.1126/science.4071043. [DOI] [PubMed] [Google Scholar]
  33. Ney P. A., Sorrentino B. P., McDonagh K. T., Nienhuis A. W. Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 1990 Jun;4(6):993–1006. doi: 10.1101/gad.4.6.993. [DOI] [PubMed] [Google Scholar]
  34. Nijhof W., Wierenga P. K. Isolation and characterization of the erythroid progenitor cell: CFU-E. J Cell Biol. 1983 Feb;96(2):386–392. doi: 10.1083/jcb.96.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Philipsen S., Talbot D., Fraser P., Grosveld F. The beta-globin dominant control region: hypersensitive site 2. EMBO J. 1990 Jul;9(7):2159–2167. doi: 10.1002/j.1460-2075.1990.tb07385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ponka P., Schulman H. M. Distinct features of iron metabolism in erythroid cells: implications for heme synthesis regulation. Adv Exp Med Biol. 1994;356:173–187. doi: 10.1007/978-1-4615-2554-7_20. [DOI] [PubMed] [Google Scholar]
  37. Porcher C., Pitiot G., Plumb M., Lowe S., de Verneuil H., Grandchamp B. Characterization of hypersensitive sites, protein-binding motifs, and regulatory elements in both promoters of the mouse porphobilinogen deaminase gene. J Biol Chem. 1991 Jun 5;266(16):10562–10569. [PubMed] [Google Scholar]
  38. Raich N., Romeo P. H., Dubart A., Beaupain D., Cohen-Solal M., Goossens M. Molecular cloning and complete primary sequence of human erythrocyte porphobilinogen deaminase. Nucleic Acids Res. 1986 Aug 11;14(15):5955–5968. doi: 10.1093/nar/14.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Riddle R. D., Yamamoto M., Engel J. D. Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci U S A. 1989 Feb;86(3):792–796. doi: 10.1073/pnas.86.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Romana M., Dubart A., Beaupain D., Chabret C., Goossens M., Romeo P. H. Structure of the gene for human uroporphyrinogen decarboxylase. Nucleic Acids Res. 1987 Sep 25;15(18):7343–7356. doi: 10.1093/nar/15.18.7343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schoenhaut D. S., Curtis P. J. Structure of a mouse erythroid 5-aminolevulinate synthase gene and mapping of erythroid-specific DNAse I hypersensitive sites. Nucleic Acids Res. 1989 Sep 12;17(17):7013–7028. doi: 10.1093/nar/17.17.7013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sutherland G. R., Baker E., Callen D. F., Hyland V. J., May B. K., Bawden M. J., Healy H. M., Borthwick I. A. 5-Aminolevulinate synthase is at 3p21 and thus not the primary defect in X-linked sideroblastic anemia. Am J Hum Genet. 1988 Sep;43(3):331–335. [PMC free article] [PubMed] [Google Scholar]
  45. Taketani S., Inazawa J., Nakahashi Y., Abe T., Tokunaga R. Structure of the human ferrochelatase gene. Exon/intron gene organization and location of the gene to chromosome 18. Eur J Biochem. 1992 Apr 1;205(1):217–222. doi: 10.1111/j.1432-1033.1992.tb16771.x. [DOI] [PubMed] [Google Scholar]
  46. Taketani S., Nakahashi Y., Osumi T., Tokunaga R. Molecular cloning, sequencing, and expression of mouse ferrochelatase. J Biol Chem. 1990 Nov 15;265(32):19377–19380. [PubMed] [Google Scholar]
  47. Tugores A., Magness S. T., Brenner D. A. A single promoter directs both housekeeping and erythroid preferential expression of the human ferrochelatase gene. J Biol Chem. 1994 Dec 9;269(49):30789–30797. [PubMed] [Google Scholar]
  48. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  49. Weaver R. F., Weissmann C. Mapping of RNA by a modification of the Berk-Sharp procedure: the 5' termini of 15 S beta-globin mRNA precursor and mature 10 s beta-globin mRNA have identical map coordinates. Nucleic Acids Res. 1979 Nov 10;7(5):1175–1193. doi: 10.1093/nar/7.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wetmur J. G., Bishop D. F., Cantelmo C., Desnick R. J. Human delta-aminolevulinate dehydratase: nucleotide sequence of a full-length cDNA clone. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7703–7707. doi: 10.1073/pnas.83.20.7703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. deBoer E., Antoniou M., Mignotte V., Wall L., Grosveld F. The human beta-globin promoter; nuclear protein factors and erythroid specific induction of transcription. EMBO J. 1988 Dec 20;7(13):4203–4212. doi: 10.1002/j.1460-2075.1988.tb03317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES