Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 15;24(14):2652–2659. doi: 10.1093/nar/24.14.2652

Solid-phase synthesis of oligo-2-pyrimidinone-2'-deoxyribonucleotides and oligo-2-pyrimidinone-2'-deoxyriboside methylphosphonates.

Y Zhou 1, P O Ts'o 1
PMCID: PMC145996  PMID: 8758991

Abstract

A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone.

Full Text

The Full Text of this article is available as a PDF (95.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal S. Functionalization of oligonucleotides with amino groups and attachment of amino specific reporter groups. Methods Mol Biol. 1994;26:93–120. doi: 10.1007/978-1-59259-513-6_3. [DOI] [PubMed] [Google Scholar]
  2. Alul R. H., Singman C. N., Zhang G. R., Letsinger R. L. Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives. Nucleic Acids Res. 1991 Apr 11;19(7):1527–1532. doi: 10.1093/nar/19.7.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connolly B. A., Newman P. C. Synthesis and properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-pyrimidinone-1-beta-D(2'-deoxyriboside) and 2-thiothymidine. Nucleic Acids Res. 1989 Jul 11;17(13):4957–4974. doi: 10.1093/nar/17.13.4957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Damha M. J., Giannaris P. A., Zabarylo S. V. An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis. Nucleic Acids Res. 1990 Jul 11;18(13):3813–3821. doi: 10.1093/nar/18.13.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dornay M., Kawato ATR Human Information Processing Research Laboratories Kyoto Japan R Suzuki M. Kawato ATR Human Information Processing Research Laboratories, Kyoto, Japan. R. Kawato ATR Human Information Processing Research Laboratories, Kyoto, Japan. R., Suzuki R. Minimum Muscle-Tension Change Trajectories Predicted by Using a 17-Muscle Model of the Monkey's Arm. J Mot Behav. 1996 Jun;28(2):83–100. doi: 10.1080/00222895.1996.9941736. [DOI] [PubMed] [Google Scholar]
  6. Gildea B., McLaughlin L. W. The synthesis of 2-pyrimidinone nucleosides and their incorporation into oligodeoxynucleotides. Nucleic Acids Res. 1989 Mar 25;17(6):2261–2281. doi: 10.1093/nar/17.6.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hangeland J. J., Levis J. T., Lee Y. C., Ts'o P. O. Cell-type specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-GalNAc)3. Bioconjug Chem. 1995 Nov-Dec;6(6):695–701. doi: 10.1021/bc00036a006. [DOI] [PubMed] [Google Scholar]
  8. Helgeland L., Laland S. The synthesis, characterization and biological properties of a new substance, 5-fluoropyrimidine-2-one. Biochim Biophys Acta. 1964 Jun 22;87(2):353–355. doi: 10.1016/0926-6550(64)90236-1. [DOI] [PubMed] [Google Scholar]
  9. Hogrefe R. I., Vaghefi M. M., Reynolds M. A., Young K. M., Arnold L. J., Jr Deprotection of methylphosphonate oligonucleotides using a novel one-pot procedure. Nucleic Acids Res. 1993 May 11;21(9):2031–2038. doi: 10.1093/nar/21.9.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuijpers W. H., Kuyl-Yeheskiely E., van Boom J. H., van Boeckel C. A. The application of the AMB protective group in the solid-phase synthesis of methylphosphonate DNA analogues. Nucleic Acids Res. 1993 Jul 25;21(15):3493–3500. doi: 10.1093/nar/21.15.3493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laland S. G., Serck-Hanssen G. Synthesis of pyrimidin-2-one deoxyribosides and their ability to support the growth of the deoxyriboside-requiring organism Lactobacillus acidophilus R 26. Biochem J. 1964 Jan;90(1):76–81. doi: 10.1042/bj0900076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levis J. T., Butler W. O., Tseng B. Y., Ts'o P. O. Cellular uptake of oligodeoxyribonucleoside methylphosphonates. Antisense Res Dev. 1995 Winter;5(4):251–259. doi: 10.1089/ard.1995.5.251. [DOI] [PubMed] [Google Scholar]
  13. Murakami A., Blake K. R., Miller P. S. Characterization of sequence-specific oligodeoxyribonucleoside methylphosphonates and their interaction with rabbit globin mRNA. Biochemistry. 1985 Jul 16;24(15):4041–4046. doi: 10.1021/bi00336a036. [DOI] [PubMed] [Google Scholar]
  14. Politz J. C., Taneja K. L., Singer R. H. Characterization of hybridization between synthetic oligodeoxynucleotides and RNA in living cells. Nucleic Acids Res. 1995 Dec 25;23(24):4946–4953. doi: 10.1093/nar/23.24.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ts'o P. O., Aurelian L., Chang E., Miller P. S. Nonionic oligonucleotide analogs (Matagen) as anticodic agents in duplex and triplex formation. Ann N Y Acad Sci. 1992 Oct 28;660:159–177. doi: 10.1111/j.1749-6632.1992.tb21068.x. [DOI] [PubMed] [Google Scholar]
  16. Wang S., Lee R. J., Cauchon G., Gorenstein D. G., Low P. S. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3318–3322. doi: 10.1073/pnas.92.8.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wu P. G., Nordlund T. M., Gildea B., McLaughlin L. W. Base stacking and unstacking as determined from a DNA decamer containing a fluorescent base. Biochemistry. 1990 Jul 10;29(27):6508–6514. doi: 10.1021/bi00479a024. [DOI] [PubMed] [Google Scholar]
  18. Zhou Y., Romano L. J. Solid-phase synthesis of oligonucleotides containing site-specific N-(2'-deoxyguanosin-8-yl)-2-(acetylamino)fluorene adducts using 9-fluorenylmethoxycarbonyl as the base-protecting group. Biochemistry. 1993 Dec 21;32(50):14043–14052. doi: 10.1021/bi00213a038. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES