Skip to main content
Genetics logoLink to Genetics
. 1998 Mar;148(3):1127–1142. doi: 10.1093/genetics/148.3.1127

Genetic analysis of the Drosophila alphaPS2 integrin subunit reveals discrete adhesive, morphogenetic and sarcomeric functions.

J W Bloor 1, N H Brown 1
PMCID: PMC1460035  PMID: 9539430

Abstract

The integrin family of cell surface receptors mediates cell-substrate and cell-to-cell adhesion and transmits intracellular signals. In Drosophila there is good evidence for an adhesive role of integrins, but evidence for integrin signalling has remained elusive. Each integrin is an alphabeta heterodimer, and the Drosophila betaPS subunit forms at least two integrins by association with different alpha subunits: alphaPS1betaPS (PS1) and alphaPS2betaPS (PS2). The complex pattern of PS2 integrin expression includes, but is more extensive than, the sites where PS2 has a known requirement. In order to investigate whether PS2 integrin is required at these additional sites and/or has functions besides mediating adhesion, a comprehensive genetic analysis of inflated, the gene that encodes alphaPS2, was performed. We isolated 35 new inflated alleles, and obtained 10 alleles from our colleagues. The majority of alleles are amorphs (36/45) or hypomorphs (4/45), but five alleles that affect specific developmental processes were identified. Interallelic complementation between these alleles suggests that some may affect distinct functional domains of the alphaPS2 protein, which specify particular interactions that promote adhesion or signalling. One new allele reveals that the PS2 integrin is required for the development of the adult halteres and legs as well as the wing.

Full Text

The Full Text of this article is available as a PDF (641.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brabant M. C., Brower D. L. PS2 integrin requirements in Drosophila embryo and wing morphogenesis. Dev Biol. 1993 May;157(1):49–59. doi: 10.1006/dbio.1993.1111. [DOI] [PubMed] [Google Scholar]
  2. Brower D. L., Bunch T. A., Mukai L., Adamson T. E., Wehrli M., Lam S., Friedlander E., Roote C. E., Zusman S. Nonequivalent requirements for PS1 and PS2 integrin at cell attachments in Drosophila: genetic analysis of the alpha PS1 integrin subunit. Development. 1995 May;121(5):1311–1320. doi: 10.1242/dev.121.5.1311. [DOI] [PubMed] [Google Scholar]
  3. Brower D. L., Jaffe S. M. Requirement for integrins during Drosophila wing development. Nature. 1989 Nov 16;342(6247):285–287. doi: 10.1038/342285a0. [DOI] [PubMed] [Google Scholar]
  4. Brower D. L., Piovant M., Reger L. A. Developmental analysis of Drosophila position-specific antigens. Dev Biol. 1985 Mar;108(1):120–130. doi: 10.1016/0012-1606(85)90014-4. [DOI] [PubMed] [Google Scholar]
  5. Brower D. L., Wilcox M., Piovant M., Smith R. J., Reger L. A. Related cell-surface antigens expressed with positional specificity in Drosophila imaginal discs. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7485–7489. doi: 10.1073/pnas.81.23.7485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown N. H. Integrins hold Drosophila together. Bioessays. 1993 Jun;15(6):383–390. doi: 10.1002/bies.950150604. [DOI] [PubMed] [Google Scholar]
  7. Brown N. H., King D. L., Wilcox M., Kafatos F. C. Developmentally regulated alternative splicing of Drosophila integrin PS2 alpha transcripts. Cell. 1989 Oct 6;59(1):185–195. doi: 10.1016/0092-8674(89)90880-5. [DOI] [PubMed] [Google Scholar]
  8. Brown N. H. Null mutations in the alpha PS2 and beta PS integrin subunit genes have distinct phenotypes. Development. 1994 May;120(5):1221–1231. doi: 10.1242/dev.120.5.1221. [DOI] [PubMed] [Google Scholar]
  9. Bunch T. A., Salatino R., Engelsgjerd M. C., Mukai L., West R. F., Brower D. L. Characterization of mutant alleles of myospheroid, the gene encoding the beta subunit of the Drosophila PS integrins. Genetics. 1992 Oct;132(2):519–528. doi: 10.1093/genetics/132.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheresh D. A., Spiro R. C. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem. 1987 Dec 25;262(36):17703–17711. [PubMed] [Google Scholar]
  11. Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
  12. Clifford R. J., Schüpbach T. Coordinately and differentially mutable activities of torpedo, the Drosophila melanogaster homolog of the vertebrate EGF receptor gene. Genetics. 1989 Dec;123(4):771–787. doi: 10.1093/genetics/123.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clifford R., Schüpbach T. Molecular analysis of the Drosophila EGF receptor homolog reveals that several genetically defined classes of alleles cluster in subdomains of the receptor protein. Genetics. 1994 Jun;137(2):531–550. doi: 10.1093/genetics/137.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Craig S. W., Johnson R. P. Assembly of focal adhesions: progress, paradigms, and portents. Curr Opin Cell Biol. 1996 Feb;8(1):74–85. doi: 10.1016/s0955-0674(96)80051-2. [DOI] [PubMed] [Google Scholar]
  15. Falk D. R., Roselli L., Curtiss S., Halladay D., Klufas C. The characterization of chromosome breaks in Drosophila melanogaster. I. Mass isolation of deficiencies which have an end point in the 14A-15A region. Mutat Res. 1984 Mar;126(1):25–34. doi: 10.1016/0027-5107(84)90166-0. [DOI] [PubMed] [Google Scholar]
  16. Fogerty F. J., Fessler L. I., Bunch T. A., Yaron Y., Parker C. G., Nelson R. E., Brower D. L., Gullberg D., Fessler J. H. Tiggrin, a novel Drosophila extracellular matrix protein that functions as a ligand for Drosophila alpha PS2 beta PS integrins. Development. 1994 Jul;120(7):1747–1758. doi: 10.1242/dev.120.7.1747. [DOI] [PubMed] [Google Scholar]
  17. Foster G. G. Negative complementation at the notch locus of Drosophila melanogaster. Genetics. 1975 Sep;81(1):99–120. doi: 10.1093/genetics/81.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gettner S. N., Kenyon C., Reichardt L. F. Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J Cell Biol. 1995 May;129(4):1127–1141. doi: 10.1083/jcb.129.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goldstein M. A., Burdette W. J. Striated visceral muscle of drosophila melanogaster. J Morphol. 1971 Jul;134(3):315–334. doi: 10.1002/jmor.1051340305. [DOI] [PubMed] [Google Scholar]
  20. Golic K. G. Site-specific recombination between homologous chromosomes in Drosophila. Science. 1991 May 17;252(5008):958–961. doi: 10.1126/science.2035025. [DOI] [PubMed] [Google Scholar]
  21. Gotwals P. J., Paine-Saunders S. E., Stark K. A., Hynes R. O. Drosophila integrins and their ligands. Curr Opin Cell Biol. 1994 Oct;6(5):734–739. doi: 10.1016/0955-0674(94)90101-5. [DOI] [PubMed] [Google Scholar]
  22. Hartley D. A., Xu T. A., Artavanis-Tsakonas S. The embryonic expression of the Notch locus of Drosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the predicted protein. EMBO J. 1987 Nov;6(11):3407–3417. doi: 10.1002/j.1460-2075.1987.tb02664.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hresko M. C., Williams B. D., Waterston R. H. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J Cell Biol. 1994 Feb;124(4):491–506. doi: 10.1083/jcb.124.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  25. Irie A., Kamata T., Puzon-McLaughlin W., Takada Y. Critical amino acid residues for ligand binding are clustered in a predicted beta-turn of the third N-terminal repeat in the integrin alpha 4 and alpha 5 subunits. EMBO J. 1995 Nov 15;14(22):5550–5556. doi: 10.1002/j.1460-2075.1995.tb00242.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kelley M. R., Kidd S., Deutsch W. A., Young M. W. Mutations altering the structure of epidermal growth factor-like coding sequences at the Drosophila Notch locus. Cell. 1987 Nov 20;51(4):539–548. doi: 10.1016/0092-8674(87)90123-1. [DOI] [PubMed] [Google Scholar]
  27. Kishimoto T. K., Hollander N., Roberts T. M., Anderson D. C., Springer T. A. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell. 1987 Jul 17;50(2):193–202. doi: 10.1016/0092-8674(87)90215-7. [DOI] [PubMed] [Google Scholar]
  28. Leptin M., Bogaert T., Lehmann R., Wilcox M. The function of PS integrins during Drosophila embryogenesis. Cell. 1989 Feb 10;56(3):401–408. doi: 10.1016/0092-8674(89)90243-2. [DOI] [PubMed] [Google Scholar]
  29. MacKrell A. J., Blumberg B., Haynes S. R., Fessler J. H. The lethal myospheroid gene of Drosophila encodes a membrane protein homologous to vertebrate integrin beta subunits. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2633–2637. doi: 10.1073/pnas.85.8.2633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin-Bermudo M. D., Dunin-Borkowski O. M., Brown N. H. Specificity of PS integrin function during embryogenesis resides in the alpha subunit extracellular domain. EMBO J. 1997 Jul 16;16(14):4184–4193. doi: 10.1093/emboj/16.14.4184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Newman S. M., Jr, Wright T. R. A histological and ultrastructural analysis of developmental defects produced by the mutation, lethal(1)myospheroid, in Drosophila melanogaster. Dev Biol. 1981 Sep;86(2):393–402. doi: 10.1016/0012-1606(81)90197-4. [DOI] [PubMed] [Google Scholar]
  32. Portin P. Allelic negative complementation at the Abruptex locus of Drosophila melanogaster. Genetics. 1975 Sep;81(1):121–133. doi: 10.1093/genetics/81.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ranganayakulu G., Zhao B., Dokidis A., Molkentin J. D., Olson E. N., Schulz R. A. A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol. 1995 Sep;171(1):169–181. doi: 10.1006/dbio.1995.1269. [DOI] [PubMed] [Google Scholar]
  34. Roote C. E., Zusman S. Alternatively spliced forms of the Drosophila alphaPS2 subunit of integrin are sufficient for viability and can replace the function of the alphaPS1 subunit of integrin in the retina. Development. 1996 Jun;122(6):1985–1994. doi: 10.1242/dev.122.6.1985. [DOI] [PubMed] [Google Scholar]
  35. Roote C. E., Zusman S. Functions for PS integrins in tissue adhesion, migration, and shape changes during early embryonic development in Drosophila. Dev Biol. 1995 May;169(1):322–336. doi: 10.1006/dbio.1995.1147. [DOI] [PubMed] [Google Scholar]
  36. Sandborn E. B., Duclos S., Messier P. E., Roberge J. J. Atypical intestinal striated muscle in Drosophila melanogaster. J Ultrastruct Res. 1967 Jun;18(5):695–702. doi: 10.1016/s0022-5320(67)80214-4. [DOI] [PubMed] [Google Scholar]
  37. Steward R., Nüsslein-Volhard C. The genetics of the dorsal-Bicaudal-D region of Drosophila melanogaster. Genetics. 1986 Jul;113(3):665–678. doi: 10.1093/genetics/113.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. WRIGHT T. R. The phenogenetics of the embryonic mutant, lethal myospheroid, in Drosophila melanogaster. J Exp Zool. 1960 Feb;143:77–99. doi: 10.1002/jez.1401430107. [DOI] [PubMed] [Google Scholar]
  39. Wehrli M., DiAntonio A., Fearnley I. M., Smith R. J., Wilcox M. Cloning and characterization of alpha PS1, a novel Drosophila melanogaster integrin. Mech Dev. 1993 Sep;43(1):21–36. doi: 10.1016/0925-4773(93)90020-x. [DOI] [PubMed] [Google Scholar]
  40. Wilcox M., Brower D. L., Smith R. J. A position-specific cell surface antigen in the drosophila wing imaginal disc. Cell. 1981 Jul;25(1):159–164. doi: 10.1016/0092-8674(81)90240-3. [DOI] [PubMed] [Google Scholar]
  41. Wilcox M., DiAntonio A., Leptin M. The function of PS integrins in Drosophila wing morphogenesis. Development. 1989 Dec;107(4):891–897. doi: 10.1242/dev.107.4.891. [DOI] [PubMed] [Google Scholar]
  42. Williams B. D., Waterston R. H. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol. 1994 Feb;124(4):475–490. doi: 10.1083/jcb.124.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xu T., Rebay I., Fleming R. J., Scottgale T. N., Artavanis-Tsakonas S. The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev. 1990 Mar;4(3):464–475. doi: 10.1101/gad.4.3.464. [DOI] [PubMed] [Google Scholar]
  44. Xu T., Rubin G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993 Apr;117(4):1223–1237. doi: 10.1242/dev.117.4.1223. [DOI] [PubMed] [Google Scholar]
  45. Zusman S., Patel-King R. S., Ffrench-Constant C., Hynes R. O. Requirements for integrins during Drosophila development. Development. 1990 Mar;108(3):391–402. doi: 10.1242/dev.108.3.391. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES