Abstract
SEWALL WRIGHT suggested that genes of large effect on a quantitative trait could be isolated by recurrent backcrossing with selection on the trait. Loci [quantitative trait loci (QTL)] at which the recurrent and nonrecurrent lines have genes of different large effect on the trait would remain segregating, while other loci would become fixed for the gene carried by the recurrent parent. If the recurrent line is inbred and the backcrossing and selection is conducted in a series of replicate lines, in each of which only one backcross parent is selected for each generation, the lines will become congenic to the recurrent parent except for the QTL of large effect and closely linked regions of the genome, and these regions can be identified using a dense set of markers that differ between the parental lines. Such lines would be particularly valuable for subsequent fine-scale mapping and gene cloning; but by chance, even QTL of large effect will be lost from some lines. The probability that QTL of specified effect remain segregating is computed as a function of its effect on the trait, the intensity of selection, and the number of generations of backcrossing. Analytical formulas are given for one or two loci, and simulation is used for more. It is shown that the method could have substantial discriminating ability and thus potential practical value.
Full Text
The Full Text of this article is available as a PDF (158.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. doi: 10.1073/pnas.93.26.15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beebe A. M., Mauze S., Schork N. J., Coffman R. L. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity. 1997 May;6(5):551–557. doi: 10.1016/s1074-7613(00)80343-x. [DOI] [PubMed] [Google Scholar]
- Charlier C., Farnir F., Berzi P., Vanmanshoven P., Brouwers B., Vromans H., Georges M. Identity-by-descent mapping of recessive traits in livestock: application to map the bovine syndactyly locus to chromosome 15. Genome Res. 1996 Jul;6(7):580–589. doi: 10.1101/gr.6.7.580. [DOI] [PubMed] [Google Scholar]
- Darvasi A. Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm Genome. 1997 Mar;8(3):163–167. doi: 10.1007/s003359900382. [DOI] [PubMed] [Google Scholar]
- Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
- Démant P., Hart A. A. Recombinant congenic strains--a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics. 1986;24(6):416–422. doi: 10.1007/BF00377961. [DOI] [PubMed] [Google Scholar]
- Guo S. W. Proportion of genome shared identical by descent by relatives: concept, computation, and applications. Am J Hum Genet. 1995 Jun;56(6):1468–1476. [PMC free article] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Hill W. G. On the theory of artificial selection in finite populations. Genet Res. 1969 Apr;13(2):143–163. doi: 10.1017/s0016672300002858. [DOI] [PubMed] [Google Scholar]
- Houwen R. H., Baharloo S., Blankenship K., Raeymaekers P., Juyn J., Sandkuijl L. A., Freimer N. B. Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat Genet. 1994 Dec;8(4):380–386. doi: 10.1038/ng1294-380. [DOI] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D., Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res. 1993 Dec;62(3):195–203. doi: 10.1017/s0016672300031906. [DOI] [PubMed] [Google Scholar]
- Keightley P. D., Hardge T., May L., Bulfield G. A genetic map of quantitative trait loci for body weight in the mouse. Genetics. 1996 Jan;142(1):227–235. doi: 10.1093/genetics/142.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollivier L., Messer L. A., Rothschild M. F., Legault C. The use of selection experiments for detecting quantitative trait loci. Genet Res. 1997 Jun;69(3):227–232. doi: 10.1017/s0016672397002802. [DOI] [PubMed] [Google Scholar]
- Rance K. A., Heath S. C., Keightley P. D. Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses. Genet Res. 1997 Oct;70(2):125–133. doi: 10.1017/s0016672397002929. [DOI] [PubMed] [Google Scholar]
- SNELL G. D., JACKSON R. B. Histocompatibility genes of the mouse. II. Production and analysis of isogenic resistant lines. J Natl Cancer Inst. 1958 Nov;21(5):843–877. [PubMed] [Google Scholar]
- Thomas A., Skolnick M. H., Lewis C. M. Genomic mismatch scanning in pedigrees. IMA J Math Appl Med Biol. 1994;11(1):1–16. doi: 10.1093/imammb/11.1.1. [DOI] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]