Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1579–1585. doi: 10.1093/genetics/148.4.1579

Antimutator mutants in bacteriophage T4 and Escherichia coli.

R M Schaaper 1
PMCID: PMC1460066  PMID: 9560377

Abstract

Antimutators are mutant strains that have reduced mutation rates compared to the corresponding wild-type strain. Their existence, along with mutator mutants that have higher mutation rates compared to the wild-type strain, are powerful evidence that mutation rates are genetically controlled. Compared to mutator mutants, antimutators have a very distinguishing property. Because they prevent normally occurring mutations, they, uniquely, are capable of providing insight into the mechanisms of spontaneous mutations. In this review, antimutator mutants are discussed in bacteriophage T4 and the bacterium Escherichia coli, with regard to their properties, possible mechanisms, and implications for the sources of spontaneous mutations in these two organisms.

Full Text

The Full Text of this article is available as a PDF (92.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capson T. L., Peliska J. A., Kaboord B. F., Frey M. W., Lively C., Dahlberg M., Benkovic S. J. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry. 1992 Nov 17;31(45):10984–10994. doi: 10.1021/bi00160a007. [DOI] [PubMed] [Google Scholar]
  2. Clayton L. K., Goodman M. F., Branscomb E. W., Galas D. J. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J Biol Chem. 1979 Mar 25;254(6):1902–1912. [PubMed] [Google Scholar]
  3. Drake J. W., Allen E. F., Forsberg S. A., Preparata R. M., Greening E. O. Genetic control of mutation rates in bacteriophageT4. Nature. 1969 Mar 22;221(5186):1128–1132. [PubMed] [Google Scholar]
  4. Drake J. W. General antimutators are improbable. J Mol Biol. 1993 Jan 5;229(1):8–13. doi: 10.1006/jmbi.1993.1002. [DOI] [PubMed] [Google Scholar]
  5. Fijalkowska I. J., Dunn R. L., Schaaper R. M. Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J Bacteriol. 1997 Dec;179(23):7435–7445. doi: 10.1128/jb.179.23.7435-7445.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fijalkowska I. J., Dunn R. L., Schaaper R. M. Mutants of Escherichia coli with increased fidelity of DNA replication. Genetics. 1993 Aug;134(4):1023–1030. doi: 10.1093/genetics/134.4.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fijalkowska I. J., Schaaper R. M. Antimutator mutations in the alpha subunit of Escherichia coli DNA polymerase III: identification of the responsible mutations and alignment with other DNA polymerases. Genetics. 1993 Aug;134(4):1039–1044. doi: 10.1093/genetics/134.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fijalkowska I. J., Schaaper R. M. Effects of Escherichia coli dnaE antimutator alleles in a proofreading-deficient mutD5 strain. J Bacteriol. 1995 Oct;177(20):5979–5986. doi: 10.1128/jb.177.20.5979-5986.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fijalkowska I. J., Schaaper R. M. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2856–2861. doi: 10.1073/pnas.93.7.2856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foster P. L., Gudmundsson G., Trimarchi J. M., Cai H., Goodman M. F. Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7951–7955. doi: 10.1073/pnas.92.17.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geiger J. R., Speyer J. F. A conditional antimutator in E. coli. Mol Gen Genet. 1977 May 20;153(1):87–97. doi: 10.1007/BF01036000. [DOI] [PubMed] [Google Scholar]
  12. Kunkel T. A., Schaaper R. M., Beckman R. A., Loeb L. A. On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. J Biol Chem. 1981 Oct 10;256(19):9883–9889. [PubMed] [Google Scholar]
  13. Lyons S. M., Speyer J. F., Schendel P. F. Interaction of an antimutator gene with DNA repair pathways in Escherichia coli K-12. Mol Gen Genet. 1985;198(2):336–347. doi: 10.1007/BF00383016. [DOI] [PubMed] [Google Scholar]
  14. Muzyczka N., Poland R. L., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J Biol Chem. 1972 Nov 25;247(22):7116–7122. [PubMed] [Google Scholar]
  15. Oller A. R., Schaaper R. M. Spontaneous mutation in Escherichia coli containing the dnaE911 DNA polymerase antimutator allele. Genetics. 1994 Oct;138(2):263–270. doi: 10.1093/genetics/138.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pavlov Y. I., Suslov V. V., Shcherbakova P. V., Kunkel T. A., Ono A., Matsuda A., Schaaper R. M. Base analog N6-hydroxylaminopurine mutagenesis in Escherichia coli: genetic control and molecular specificity. Mutat Res. 1996 Oct 25;357(1-2):1–15. doi: 10.1016/0027-5107(96)00060-7. [DOI] [PubMed] [Google Scholar]
  17. Quiñones A., Piechocki R. Isolation and characterization of Escherichia coli antimutators. A new strategy to study the nature and origin of spontaneous mutations. Mol Gen Genet. 1985;201(2):315–322. doi: 10.1007/BF00425677. [DOI] [PubMed] [Google Scholar]
  18. Reha-Krantz L. J. Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants. Relating structure to function. J Mol Biol. 1988 Aug 20;202(4):711–724. doi: 10.1016/0022-2836(88)90552-9. [DOI] [PubMed] [Google Scholar]
  19. Reha-Krantz L. J. Learning about DNA polymerase function by studying antimutator DNA polymerases. Trends Biochem Sci. 1995 Apr;20(4):136–140. doi: 10.1016/s0968-0004(00)88987-2. [DOI] [PubMed] [Google Scholar]
  20. Ripley L. S., Glickman B. W., Shoemaker N. B. Mutator versus antimutator activity of a T4 DNA polymerase mutant distinguishes two different frameshifting mechanisms. Mol Gen Genet. 1983;189(1):113–117. doi: 10.1007/BF00326062. [DOI] [PubMed] [Google Scholar]
  21. Ripley L. S., Shoemaker N. B. A major role for bacteriophage T4 DNA polymerase in frameshift mutagenesis. Genetics. 1983 Mar;103(3):353–366. doi: 10.1093/genetics/103.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ripley L. S. Transversion mutagenesis in bacteriophage T4. Mol Gen Genet. 1975 Nov 3;141(1):23–40. doi: 10.1007/BF00332376. [DOI] [PubMed] [Google Scholar]
  23. Santos M. E., Drake J. W. Rates of spontaneous mutation in bacteriophage T4 are independent of host fidelity determinants. Genetics. 1994 Nov;138(3):553–564. doi: 10.1093/genetics/138.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schaaper R. M., Dunn R. L. Spontaneous mutation in the Escherichia coli lacI gene. Genetics. 1991 Oct;129(2):317–326. doi: 10.1093/genetics/129.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaaper R. M. Suppressors of Escherichia coli mutT: antimutators for DNA replication errors. Mutat Res. 1996 Feb 19;350(1):17–23. doi: 10.1016/0027-5107(95)00086-0. [DOI] [PubMed] [Google Scholar]
  26. Schaaper R. M. The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra. Genetics. 1993 Aug;134(4):1031–1038. doi: 10.1093/genetics/134.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spacciapoli P., Nossal N. G. A single mutation in bacteriophage T4 DNA polymerase (A737V, tsL141) decreases its processivity as a polymerase and increases its processivity as a 3'-->5' exonuclease. J Biol Chem. 1994 Jan 7;269(1):438–446. [PubMed] [Google Scholar]
  28. Spacciapoli P., Nossal N. G. Interaction of DNA polymerase and DNA helicase within the bacteriophage T4 DNA replication complex. Leading strand synthesis by the T4 DNA polymerase mutant A737V (tsL141) requires the T4 gene 59 helicase assembly protein. J Biol Chem. 1994 Jan 7;269(1):447–455. [PubMed] [Google Scholar]
  29. Stocki S. A., Nonay R. L., Reha-Krantz L. J. Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3' --> 5' exonuclease activities. J Mol Biol. 1995 Nov 17;254(1):15–28. doi: 10.1006/jmbi.1995.0595. [DOI] [PubMed] [Google Scholar]
  30. Wang J., Sattar A. K., Wang C. C., Karam J. D., Konigsberg W. H., Steitz T. A. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27;89(7):1087–1099. doi: 10.1016/s0092-8674(00)80296-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES