Skip to main content
Genetics logoLink to Genetics
. 1998 Apr;148(4):1611–1618. doi: 10.1093/genetics/148.4.1611

Aspects of the ultraviolet photobiology of some T-even bacteriophages.

L A Smith 1, J W Drake 1
PMCID: PMC1460069  PMID: 9560380

Abstract

Bacteriophage T4 DNA metabolism is largely insulated from that of its host, although some host functions assist in the repair of T4 DNA damage. Environmental factors sometimes affect survival and mutagenesis after ultraviolet (UV) irradiation of T4, and can affect mutagenesis in many organisms. We therefore tested the effect of certain environmental factors and host genetic defects upon spontaneous and UV-induced mutagenesis and survival in T4 and some related T-even phages. Plating at pH 9 enhances UV resistance in T4 by about 14% compared to pH 7. The host cAMP regulatory system affects host survival after UV irradiation but does not affect T4 survival. Thermal rescue, the increasing survival of irradiated T4 with increasing plating temperature, occurs also in phage T6, but only weakly in phages T2 and RB69; this temperature effect is not altered by supplementing infected cells with additional Holliday resolvase (gp49) early in infection. Phage RB69 turns out to have almost 50% greater UV resistance than T4, but has a genome of about the same size; RB69 is UV-mutable but does not produce r mutants, which are easily seen in T2, T4, and T6. Spontaneous mutagenesis in T4 shows no dependence on medium and little dependence on temperature overall, but mutation rates can increase and probably decrease with temperature at specific sites. UV mutagenesis is not affected by incubating irradiated particles under various conditions before plating, in contrast to phage S13.

Full Text

The Full Text of this article is available as a PDF (114.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barth K. A., Powell D., Trupin M., Mosig G. Regulation of two nested proteins from gene 49 (recombination endonuclease VII) and of a lambda RexA-like protein of bacteriophage T4. Genetics. 1988 Oct;120(2):329–343. doi: 10.1093/genetics/120.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conkling M. A., Drake J. W. Isolation and characterization of conditional alleles of bacteriophage T4 genes uvsX and uvsY. Genetics. 1984 Aug;107(4):505–523. doi: 10.1093/genetics/107.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conkling M. A., Drake J. W. Thermal rescue of UV-irradiated bacteriophage T4 and biphasic mode of action of the WXY system. Genetics. 1984 Aug;107(4):525–536. doi: 10.1093/genetics/107.4.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drake J. W. Ultraviolet mutagenesis in bacteriophage T-4. I. Irradiation of extracellular phage particles. J Bacteriol. 1966 May;91(5):1775–1780. doi: 10.1128/jb.91.5.1775-1780.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dressman H. K., Wang C. C., Karam J. D., Drake J. W. Retention of replication fidelity by a DNA polymerase functioning in a distantly related environment. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8042–8046. doi: 10.1073/pnas.94.15.8042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FREESE E., BAUTZ E., FREESE E. B. The chemical and mutagenic specificity of hydroxylamine. Proc Natl Acad Sci U S A. 1961 Jun 15;47:845–855. doi: 10.1073/pnas.47.6.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hershey A. D. Mutation of Bacteriophage with Respect to Type of Plaque. Genetics. 1946 Nov;31(6):620–640. doi: 10.1093/genetics/31.6.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koch R. E., Drake J. W. Cryptic mutants of bacteriophage T4. Genetics. 1970 Jul;65(3):379–390. doi: 10.1093/genetics/65.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mosig G., Luder A., Ernst A., Canan N. Bypass of a primase requirement for bacteriophage T4 DNA replication in vivo by a recombination enzyme, endonuclease VII. New Biol. 1991 Dec;3(12):1195–1205. [PubMed] [Google Scholar]
  11. Paddison P., Abedon S. T., Dressman H. K., Gailbreath K., Tracy J., Mosser E., Neitzel J., Guttman B., Kutter E. The roles of the bacteriophage T4 r genes in lysis inhibition and fine-structure genetics: a new perspective. Genetics. 1998 Apr;148(4):1539–1550. doi: 10.1093/genetics/148.4.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Puyo M. F., Calsou P., Salles B. UV resistance of E. coli K-12 deficient in cAMP/CRP regulation. Mutat Res. 1992 Aug;282(4):247–252. doi: 10.1016/0165-7992(92)90130-a. [DOI] [PubMed] [Google Scholar]
  13. Ripley L. S., Drake J. W. Bacteriophage T4 particles are refractory to bisulfite mutagenesis. Mutat Res. 1984 Nov;129(2):149–152. doi: 10.1016/0027-5107(84)90147-7. [DOI] [PubMed] [Google Scholar]
  14. Russell R. L., Huskey R. J. Partial exclusion between T-even bacteriophages: an incipient genetic isolation mechanism. Genetics. 1974 Dec;78(4):989–1014. doi: 10.1093/genetics/78.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salles B., Weinstock G. M. Interaction of the CRP-cAMP complex with the cea regulatory region. Mol Gen Genet. 1989 Feb;215(3):537–542. doi: 10.1007/BF00427053. [DOI] [PubMed] [Google Scholar]
  16. Santos M. E., Drake J. W. Rates of spontaneous mutation in bacteriophage T4 are independent of host fidelity determinants. Genetics. 1994 Nov;138(3):553–564. doi: 10.1093/genetics/138.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schuldiner S., Agmon V., Brandsma J., Cohen A., Friedman E., Padan E. Induction of SOS functions by alkaline intracellular pH in Escherichia coli. J Bacteriol. 1986 Nov;168(2):936–939. doi: 10.1128/jb.168.2.936-939.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tessman I., Kennedy M. A., Liu S. K. Unusual kinetics of uracil formation in single and double-stranded DNA by deamination of cytosine in cyclobutane pyrimidine dimers. J Mol Biol. 1994 Jan 21;235(3):807–812. doi: 10.1006/jmbi.1994.1040. [DOI] [PubMed] [Google Scholar]
  19. Tessman I., Kennedy M. A. The two-step model of UV mutagenesis reassessed: deamination of cytosine in cyclobutane dimers as the likely source of the mutations associated with photoreactivation. Mol Gen Genet. 1991 May;227(1):144–148. doi: 10.1007/BF00260719. [DOI] [PubMed] [Google Scholar]
  20. Tessman I., Liu S. K., Kennedy M. A. Mechanism of SOS mutagenesis of UV-irradiated DNA: mostly error-free processing of deaminated cytosine. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1159–1163. doi: 10.1073/pnas.89.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wachsman J. T., Drake J. W. A new epistasis group for the repair of DNA damage in bacteriophage T4: replication repair. Genetics. 1987 Mar;115(3):405–417. doi: 10.1093/genetics/115.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang J., Sattar A. K., Wang C. C., Karam J. D., Konigsberg W. H., Steitz T. A. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27;89(7):1087–1099. doi: 10.1016/s0092-8674(00)80296-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES