Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Jul 15;24(14):2740–2745. doi: 10.1093/nar/24.14.2740

1H NMR studies of the 5-(hydroxymethyl)-2'-deoxyuridine containing TF1 binding site.

L B Pasternack 1, J Bramham 1, L Mayol 1, A Galeone 1, X Jia 1, D R Kearns 1
PMCID: PMC146007  PMID: 8759005

Abstract

The pyrimidine base 5-(hydroxymethyl)-2'-deoxyuridine (HmU) is a common nucleotide in SPO1 phage DNA. Numerous transcriptional proteins bind HmU-containing DNA preferentially implicating a regulatory function of HmU. We have investigated the conformation and dynamics of d-(5'-CHmUCHmUACACGHmUGHmUAGAG-OH-3')2 (HmU-DNA). This oligonucleotide mimics the consensus sequence of Transcription Factor 1 (TF1). The HmU-DNA was compared to the thymine-containing oligonucleotide. NOESY and DQF COSY spectroscopy provided resonance assignments of nonexchangeable and exchangeable protons, intranucleotide, internucleotide and intrastrand proton-proton distances, and dihedral angle constraints. Methylene protons of the hydroxymethyl group are nonequivalent protons and the hydroxymethyl group is not freely rotating. The hydroxymethyl group adopts a specific orientation with the OH group oriented on the 3' side of the plane of the base. Analysis of imino proton resonances and NOEs indicates additional end base pair fraying and a temperature-induced transition to a conformation in which the internal HmU-A base pairs are disrupted or have reduced lifetimes. Orientation of the hydroxymethyl group indicates the presence of internucleotide intrastrand hydrogen bonding between the HmU12C5 hydroxyl group and A13. All sugars in both DNAs show a C2'endo conformation (typical of B-DNA).

Full Text

The Full Text of this article is available as a PDF (98.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972 Nov 15;94(23):8205–8212. doi: 10.1021/ja00778a043. [DOI] [PubMed] [Google Scholar]
  2. Avizonis D. Z., Kearns D. R. Structural characterization of d(CAACCCGTTG) and d(CAACGGGTTG) mini-hairpin loops by heteronuclear NMR: the effects of purines versus pyrimidines in DNA hairpins. Nucleic Acids Res. 1995 Apr 11;23(7):1260–1268. doi: 10.1093/nar/23.7.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilimoria M. H., Gupta S. V. Comparison of the mutagenic activity of 5-hydroxymethyldeoxyuridine with 5-substituted 2'-deoxyuridine analogs in the Ames Salmonella/microsome test. Mutat Res. 1986 Mar;169(3):123–127. doi: 10.1016/0165-1218(86)90091-1. [DOI] [PubMed] [Google Scholar]
  4. Boorstein R. J., Chiu L. N., Teebor G. W. A mammalian cell line deficient in activity of the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase is resistant to the toxic effects of the thymidine analog 5-hydroxymethyl-2'-deoxyuridine. Mol Cell Biol. 1992 Dec;12(12):5536–5540. doi: 10.1128/mcb.12.12.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borden K. L., Jenkins T. C., Skelly J. V., Brown T., Lane A. N. Conformational properties of the G.G mismatch in d(CGCGAATTGGCG)2 determined by NMR. Biochemistry. 1992 Jun 16;31(23):5411–5422. doi: 10.1021/bi00138a024. [DOI] [PubMed] [Google Scholar]
  6. Cheng J. W., Chou S. H., Salazar M., Reid B. R. Solution structure of [d(GCGTATACGC)]2. J Mol Biol. 1992 Nov 5;228(1):118–137. doi: 10.1016/0022-2836(92)90496-7. [DOI] [PubMed] [Google Scholar]
  7. Choy H. A., Romeo J. M., Geiduschek E. P. Activity of a phage-modified RNA polymerase at hybrid promoters. Effects of substituting thymine for hydroxymethyluracil in a phage SP01 middle promoter. J Mol Biol. 1986 Sep 5;191(1):59–73. doi: 10.1016/0022-2836(86)90422-5. [DOI] [PubMed] [Google Scholar]
  8. Cuniasse P., Sowers L. C., Eritja R., Kaplan B., Goodman M. F., Cognet J. A., LeBret M., Guschlbauer W., Fazakerley G. V. An abasic site in DNA. Solution conformation determined by proton NMR and molecular mechanics calculations. Nucleic Acids Res. 1987 Oct 12;15(19):8003–8022. doi: 10.1093/nar/15.19.8003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frenkel K., Cummings A., Solomon J., Cadet J., Steinberg J. J., Teebor G. W. Quantitative determination of the 5-(hydroxymethyl)uracil moiety in the DNA of gamma-irradiated cells. Biochemistry. 1985 Aug 13;24(17):4527–4533. doi: 10.1021/bi00338a007. [DOI] [PubMed] [Google Scholar]
  10. Ganguly T., Duker N. J. Reduced 5-hydroxymethyluracil-DNA glycosylase activity in Werner's syndrome cells. Mutat Res. 1992 Mar;275(2):87–96. doi: 10.1016/0921-8734(92)90012-e. [DOI] [PubMed] [Google Scholar]
  11. Harrison S. C. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. doi: 10.1038/353715a0. [DOI] [PubMed] [Google Scholar]
  12. Herrala A. M., Vilpo J. A. Template-primer activity of 5-(hydroxymethyl)uracil-containing DNA for prokaryotic and eukaryotic DNA and RNA polymerases. Biochemistry. 1989 Oct 17;28(21):8274–8277. doi: 10.1021/bi00447a003. [DOI] [PubMed] [Google Scholar]
  13. Hollstein M. C., Brooks P., Linn S., Ames B. N. Hydroxymethyluracil DNA glycosylase in mammalian cells. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4003–4007. doi: 10.1073/pnas.81.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Härd T., Kearns D. R. Reduced DNA flexibility in complexes with a type II DNA binding protein. Biochemistry. 1990 Jan 30;29(4):959–965. doi: 10.1021/bi00456a017. [DOI] [PubMed] [Google Scholar]
  15. Kim S. G., Lin L. J., Reid B. R. Determination of nucleic acid backbone conformation by 1H NMR. Biochemistry. 1992 Apr 14;31(14):3564–3574. doi: 10.1021/bi00129a003. [DOI] [PubMed] [Google Scholar]
  16. Mellac S., Fazakerley G. V., Sowers L. C. Structures of base pairs with 5-(hydroxymethyl)-2'-deoxyuridine in DNA determined by NMR spectroscopy. Biochemistry. 1993 Aug 3;32(30):7779–7786. doi: 10.1021/bi00081a025. [DOI] [PubMed] [Google Scholar]
  17. Moe J. G., Russu I. M. Kinetics and energetics of base-pair opening in 5'-d(CGCGAATTCGCG)-3' and a substituted dodecamer containing G.T mismatches. Biochemistry. 1992 Sep 15;31(36):8421–8428. doi: 10.1021/bi00151a005. [DOI] [PubMed] [Google Scholar]
  18. Prusoff W. H., Ward D. C. Nucleoside analogs with antiviral activity. Biochem Pharmacol. 1976 Jun 1;25(11):1233–1239. doi: 10.1016/0006-2952(76)90083-6. [DOI] [PubMed] [Google Scholar]
  19. Reisman J. M., Hsu V. L., Jariel-Encontre I., Lecou C., Sayre M. H., Kearns D. R., Parello J. A 1H-NMR study of the transcription factor 1 from Bacillus subtilis phage SPO1 by selective 2H-labeling. Complete assignment and structural analysis of the aromatic resonances for a 22-kDa homodimer. Eur J Biochem. 1993 Apr 15;213(2):865–873. doi: 10.1111/j.1432-1033.1993.tb17830.x. [DOI] [PubMed] [Google Scholar]
  20. SantaLucia J., Jr, Turner D. H. Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. Biochemistry. 1993 Nov 30;32(47):12612–12623. doi: 10.1021/bi00210a009. [DOI] [PubMed] [Google Scholar]
  21. Schneider G. J., Sayre M. H., Geiduschek E. P. DNA-bending properties of TF1. J Mol Biol. 1991 Oct 5;221(3):777–794. doi: 10.1016/0022-2836(91)80175-t. [DOI] [PubMed] [Google Scholar]
  22. Shiau G. T., Schinazi R. F., Chen M. S., Prusoff W. H. Synthesis and biological activities of 5-(hydroxymethyl, azidomethyl, or aminomethyl)-2'-deoxyuridine and related 5'-substituted analogues. J Med Chem. 1980 Feb;23(2):127–133. doi: 10.1021/jm00176a005. [DOI] [PubMed] [Google Scholar]
  23. Shirnamé-Moré L., Rossman T. G., Troll W., Teebor G. W., Frenkel K. Genetic effects of 5-hydroxymethyl-2'-deoxyuridine, a product of ionizing radiation. Mutat Res. 1987 Jun;178(2):177–186. doi: 10.1016/0027-5107(87)90267-3. [DOI] [PubMed] [Google Scholar]
  24. Teebor G. W., Frenkel K., Goldstein M. S. Ionizing radiation and tritium transmutation both cause formation of 5-hydroxymethyl-2'-deoxyuridine in cellular DNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):318–321. doi: 10.1073/pnas.81.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES